
Org Mode

The Emacs of plain-text formats

Timothy

2020-07-21

Plain text formats

Known uses

When I say “plain text”, what comes to mind?

• Source code

• README files

• LATEX

• HTML

All of these essentially consist of content and markup/syntax.

1

Known uses

When I say “plain text”, what comes to mind?

• Source code

• README files

• LATEX

• HTML

All of these essentially consist of content and markup/syntax.

1

Known uses

When I say “plain text”, what comes to mind?

• Source code

• README files

• LATEX

• HTML

All of these essentially consist of content and markup/syntax.

1

Known uses

When I say “plain text”, what comes to mind?

• Source code

• README files

• LATEX

• HTML

All of these essentially consist of content and markup/syntax.

1

Known uses

When I say “plain text”, what comes to mind?

• Source code

• README files

• LATEX

• HTML

All of these essentially consist of content and markup/syntax.

1

Markdown

The most common plaintext markup syntax, created in 2004.
1 # This is markdown
2
3 For **bold** we use twice as many asterics as neccesary, then use the same
4 charachter for *italic*. But wait there's another way to do _italics_, it just
5 seems like it should be underline. Thankfully there's only one way to do
6 [links](https://tecosaur.com), or is it (a link)[https://tecosaur.com]? Every so
7 often I forget the order, and then it's a pain. At least `inline-code` is simple.
8
9 By the way, did I mention there are about 40 functionally different markdown

implementations?↪→
10 (see [here](https://github.com/commonmark/commonmark-spec/wiki/markdown-flavors))

2

Org-mode

A format developed within Emacs, created in 2003. Other systems
have begun work on supporting the format.

1 * This is Org-mode
2
3 We have a single-emphasis-charachter *bold*, and sensible /italics/, which
4 makes a nice change.
5 There's only one way of doing [[*This is Org-mode][links]],
6 but unfortunately I now need to press shift for ~inline code~.
7
8 We also get =verbatim= though, and there's only one implementation of this,
9 so no fragmentation.

3

One moment. . .

From our first slide, “Content and markup”.

That applies to far more that the examples we listed. Consider:

• Presentations

• Spreadsheets

• (Uni) notes, PKBs

• Reports/Papers

• Interactive notebooks

• Books

• Todo lists / task management

That’s . . . a lot

4

One moment. . .

From our first slide, “Content and markup”.

That applies to far more that the examples we listed. Consider:

• Presentations

• Spreadsheets

• (Uni) notes, PKBs

• Reports/Papers

• Interactive notebooks

• Books

• Todo lists / task management

That’s . . . a lot

4

One moment. . .

From our first slide, “Content and markup”.

That applies to far more that the examples we listed. Consider:

• Presentations

• Spreadsheets

• (Uni) notes, PKBs

• Reports/Papers

• Interactive notebooks

• Books

• Todo lists / task management

That’s . . . a lot

4

One moment. . .

From our first slide, “Content and markup”.

That applies to far more that the examples we listed. Consider:

• Presentations

• Spreadsheets

• (Uni) notes, PKBs

• Reports/Papers

• Interactive notebooks

• Books

• Todo lists / task management

That’s . . . a lot

4

One moment. . .

From our first slide, “Content and markup”.

That applies to far more that the examples we listed. Consider:

• Presentations

• Spreadsheets

• (Uni) notes, PKBs

• Reports/Papers

• Interactive notebooks

• Books

• Todo lists / task management

That’s . . . a lot

4

One moment. . .

From our first slide, “Content and markup”.

That applies to far more that the examples we listed. Consider:

• Presentations

• Spreadsheets

• (Uni) notes, PKBs

• Reports/Papers

• Interactive notebooks

• Books

• Todo lists / task management

That’s . . . a lot

4

One moment. . .

From our first slide, “Content and markup”.

That applies to far more that the examples we listed. Consider:

• Presentations

• Spreadsheets

• (Uni) notes, PKBs

• Reports/Papers

• Interactive notebooks

• Books

• Todo lists / task management

That’s . . . a lot

4

One moment. . .

From our first slide, “Content and markup”.

That applies to far more that the examples we listed. Consider:

• Presentations

• Spreadsheets

• (Uni) notes, PKBs

• Reports/Papers

• Interactive notebooks

• Books

• Todo lists / task management

That’s . . . a lot

4

One moment. . .

From our first slide, “Content and markup”.

That applies to far more that the examples we listed. Consider:

• Presentations

• Spreadsheets

• (Uni) notes, PKBs

• Reports/Papers

• Interactive notebooks

• Books

• Todo lists / task management

That’s . . . a lot

4

Consider the overlap

For almost all of the different use cases just mentioned, we use a
different app for almost each use. In each app though, we spend
most of our time just working with text.

For a single task, we’ll often use multiple apps, then struggle to
weave a workflow together involving them all. Most apps are well
aware of this, and so have put a good deal of effort into integrations
(e.g. the Microsoft Office series).

Reflecting on this however, this state of affairs seems a bit
sub-optimal.

5

Consider the overlap

For almost all of the different use cases just mentioned, we use a
different app for almost each use. In each app though, we spend
most of our time just working with text.

For a single task, we’ll often use multiple apps, then struggle to
weave a workflow together involving them all. Most apps are well
aware of this, and so have put a good deal of effort into integrations
(e.g. the Microsoft Office series).

Reflecting on this however, this state of affairs seems a bit
sub-optimal.

5

Consider the overlap

For almost all of the different use cases just mentioned, we use a
different app for almost each use. In each app though, we spend
most of our time just working with text.

For a single task, we’ll often use multiple apps, then struggle to
weave a workflow together involving them all. Most apps are well
aware of this, and so have put a good deal of effort into integrations
(e.g. the Microsoft Office series).

Reflecting on this however, this state of affairs seems a bit
sub-optimal.

5

Example — Comp. Sci. Researcher

Consider the following hypothetical, situation:

You are a computer science researcher. You have a nice idea which
re-imagines the standard method of implementing a common
algorithm. You want to try it out, then maybe write a paper/blog
post.

6

Comp Sci Researcher Hypothetical

Search the existing literature you’d want some sort of notes file, probably a
word doc (.docx), or other plaintext format (.md).

Write up you idea so you don’t forget likely use a (second) word or .md doc,
or if some maths is involved — LATEX (.tex)

Test your idea Open up a notebook to prototype some code, using something
like Jupyter (.ipynb)

Formally code your idea up Use you code editor of choice, and whatever
language

Tabulate speed comparison A basic spreadsheet seems appropriate, .xlsx.
Write up a paper The industry standard is LATEX (.tex)
Share a blog post on your website Convert aspects of you paper (.tex) to

.md or some other format that web CMS tools use, probably
with examples from your notebook (.ipynb) and maybe your
speed comparison (.xlsx)

Wow .. that’s about six different applications/formats, and your work is spread

across about 5-8 files too! 7

A note on workflow

You can do productive, maintainable and reproducible work with all
kinds of different software set-ups. So this discussion is not geared
toward convincing you there is ’One True Way’ to organize things. I
do think, however, that if you’re in the early phase of your career,
it’s worth giving some thought to how you’re going to organize and
manage your work. Here, I will just try to detail one particular
method, and the features which I think make it a particularly worthy
candidate.
My paraphrased adaptation of Kieran’s introduction in “Choosing Your Workfow Applications”

8

Org-mode

What’s with the name?

Why is “mode” in the name?

It’s because name of the emacs ’mode’ that this format was
designed/implemented in.

9

What’s with the name?

Why is “mode” in the name?

It’s because name of the emacs ’mode’ that this format was
designed/implemented in.

9

What is it?

A plain text markup format, like we mentioned earlier.

It’s designed to be easily manipulated by both humans (like
markdown) and code (like JSON).

The mode supplies a syntax, and tools, for programmatically
handling structured text, and an ecosystem built upon that
fundamental ability. And it runs inside Emacs.

10

What is it?

A plain text markup format, like we mentioned earlier.

It’s designed to be easily manipulated by both humans (like
markdown) and code (like JSON).

The mode supplies a syntax, and tools, for programmatically
handling structured text, and an ecosystem built upon that
fundamental ability. And it runs inside Emacs.

10

What is it?

A plain text markup format, like we mentioned earlier.

It’s designed to be easily manipulated by both humans (like
markdown) and code (like JSON).

The mode supplies a syntax, and tools, for programmatically
handling structured text, and an ecosystem built upon that
fundamental ability. And it runs inside Emacs.

10

What makes it good?

Possibilities allowed for by that last paragraph. Particularly:

• The rich functionally of the Org-mode mode

• Org-babel

• Integration

11

What can you do with it

Now I demo a lot.

Please, please, please talk to me. We’ll both get the most out of this
if this segment is highly interactive.

12

What can you do with it

Now I demo a lot.

Please, please, please talk to me. We’ll both get the most out of this
if this segment is highly interactive.

12

Resources

• Doom Emacs

• What Even Is Org Mode? - Atomized

• Choosing Your Workflow Application (pdf)

And some recommendations:

• Org-mode tutorials | Pragmatic Emacs

• OrgMode E01S01: Headlines & outline mode - YouTube

13

https://github.com/hlissner/doom-emacs
http://atomized.org/blog/2018/09/19/what-even-is-org-mode/
http://kieranhealy.org/files/misc/workflow-apps.pdf
http://pragmaticemacs.com/org-mode-tutorials/
https://www.youtube.com/watch?v=sQS06Qjnkcc&list=PLVtKhBrRV_ZkPnBtt_TD1Cs9PJlU0IIdE

	Plain text formats
	Org-mode

#+TITLE: Org Mode
#+SUBTITLE: The Emacs of plain-text formats
#+AUTHOR: Timothy
#+DATE: 2020-07-21
#+OPTIONS: toc:nil
#+LATEX_HEADER: \usepackage{microtype}
#+LATEX_HEADER: \usepackage[scale=0.9]{sourcecodepro}
#+BEAMER_HEADER: \let\textsc\MakeUppercase
#+BEAMER_HEADER: \definecolor{verbatim}{HTML}{50a14f}
#+BEAMER_HEADER: \makeatletter \def\verbatim@font{\color{verbatim}\normalfont\ttfamily} \makeatother

* Plain text formats
** Known uses
When I say "plain text", what comes to mind?
\pause

+ Source code \pause
+ ~README~ files \pause
+ \LaTeX
+ =HTML=

\pause
All of these essentially consist of content and markup/syntax.
** Markdown
The most common plaintext markup syntax, created in 2004.

#+ATTR_LATEX: :options fontsize=\tiny
#+BEGIN_SRC md
This is markdown

For **bold** we use twice as many asterics as neccesary, then use the same
charachter for *italic*. But wait there's another way to do _italics_, it just
seems like it should be underline. Thankfully there's only one way to do
[links](https://tecosaur.com), or is it (a link)[https://tecosaur.com]? Every so
often I forget the order, and then it's a pain. At least `inline-code` is simple.

By the way, did I mention there are about 40 functionally different markdown implementations?
(see [here](https://github.com/commonmark/commonmark-spec/wiki/markdown-flavors))
#+END_SRC
** Org-mode
A format developed within Emacs, created in 2003. Other systems have begun work
on supporting the format.

#+ATTR_LATEX: :options fontsize=\tiny
#+BEGIN_SRC text
,* This is Org-mode

We have a single-emphasis-charachter *bold*, and sensible /italics/, which
makes a nice change.
There's only one way of doing [[*This is Org-mode][links]],
but unfortunately I now need to press shift for ~inline code~.

We also get =verbatim= though, and there's only one implementation of this,
so no fragmentation.
#+END_SRC
** One moment...
From our [[*Known uses][first slide]], "Content and markup".

\pause
That applies to far more that the examples we listed.
Consider: \pause
 + Presentations \pause
 + Spreadsheets \pause
 + (Uni) notes, PKBs
 + Reports/Papers \pause
 + Interactive notebooks \pause
 + Books \pause
 + Todo lists / task management

\pause
That's ... a lot

** Consider the overlap
For almost all of the different use cases just mentioned, we use a different app
for almost each use. In each app though, we spend most of our time just working
with text.

\pause
For a single task, we'll often use multiple apps, then struggle to weave a
workflow together involving them all. Most apps are well aware of this, and so
have put a good deal of effort into integrations (e.g. the Microsoft Office series).

\pause
Reflecting on this however, this state of affairs seems a bit sub-optimal.

** Example --- Comp. Sci. Researcher
Consider the following hypothetical, situation:

You are a computer science researcher. You have a nice idea which re-imagines
the standard method of implementing a common algorithm.
You want to try it out, then maybe write a paper/blog post.

** Comp Sci Researcher Hypothetical
\footnotesize
 + Search the existing literature :: you'd want some sort of notes file, probably
 a word doc (~.docx~), or other plaintext format (~.md~).
 + Write up you idea so you don't forget :: likely use a (second) word or ~.md~ doc, or if some
 maths is involved --- \LaTeX{} (~.tex~)
 + Test your idea :: Open up a notebook to prototype some code, using something
 like Jupyter (~.ipynb~)
 + Formally code your idea up :: Use you code editor of choice, and whatever language
 + Tabulate speed comparison :: A basic spreadsheet seems appropriate, ~.xlsx~.
 + Write up a paper :: The industry standard is \LaTeX{} (~.tex~)
 + Share a blog post on your website :: Convert aspects of you paper (~.tex~) to ~.md~ or
 some other format that web CMS tools use, probably with examples from your
 notebook (~.ipynb~) and maybe your speed comparison (~.xlsx~)

Wow .. that's about six different applications/formats, and your work is spread
across about 5-8 files too!
** A note on workflow

You can do productive, maintainable and reproducible work with all kinds of
different software set-ups. So this discussion is not geared toward convincing
you there is 'One True Way' to organize things. I do think, however, that if you’re
in the early phase of your career, it's worth giving some thought to how you’re
going to organize and manage your work. Here, I will just try to detail one
particular method, and the features which I think make it a particularly worthy candidate.

\tiny
/My paraphrased adaptation of Kieran's introduction in "Choosing Your Workfow Applications"/
* Org-mode
** What's with the name?
Why is "mode" in the name? \pause

It's because name of the emacs 'mode' that this format was designed/implemented in.
** What is it?
A plain text markup format, like we mentioned earlier.
\pause

It's designed to be easily manipulated by both humans (like markdown) and code
(like JSON).

\pause
The mode supplies a syntax, and tools, for programmatically handling structured
text, and an ecosystem built upon that fundamental ability. And it runs inside
Emacs.

** What makes it good?

Possibilities allowed for by that last paragraph. Particularly:

+ The /rich/ functionally of the ~Org-mode~ mode
+ Org-babel
+ Integration

** What can you do with it

Now I demo a lot.

\pause
Please, please, /please/ talk to me.
We'll both get the most out of this if this segment is highly interactive.

** Resources
+ [[https://github.com/hlissner/doom-emacs][Doom Emacs]]
+ [[http://atomized.org/blog/2018/09/19/what-even-is-org-mode/][What Even Is Org Mode? - Atomized]]
+ [[http://kieranhealy.org/files/misc/workflow-apps.pdf][Choosing Your Workflow Application (pdf)]]

And some recommendations:
+ [[http://pragmaticemacs.com/org-mode-tutorials/][Org-mode tutorials | Pragmatic Emacs]]
+ [[https://www.youtube.com/watch?v=sQS06Qjnkcc&list=PLVtKhBrRV_ZkPnBtt_TD1Cs9PJlU0IIdE][OrgMode E01S01: Headlines & outline mode - YouTube]]

% Created 2020-07-21 Tue 17:48
% Intended LaTeX compiler: pdflatex
\documentclass[presentation]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage{microtype}
\usepackage[scale=0.9]{sourcecodepro}

 \usepackage[main,include]{embedall}
 \IfFileExists{./\jobname.org}{\embedfile[desc=The original file]{\jobname.org}}{}

 \usepackage{minted}
 \usepackage[many]{tcolorbox}
 \setminted{
 frame=none,
 % framesep=2mm,
 baselinestretch=1.2,
 fontsize=\footnotesize,
 highlightcolor=white!95!black!80!blue,
 linenos,
 breakanywhere=true,
 breakautoindent=true,
 breaklines=true,
 tabsize=4,
 xleftmargin=3.5em,
 autogobble=true,
 obeytabs=true,
 python3=true,
 % texcomments=true,
 framesep=2mm,
 breakbefore=\\.+,
 breakafter=\,
 style=autumn,
 breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow},
 breakanywheresymbolpre=\,\footnotesize\ensuremath{_{\color{white!60!black}\rfloor}},
 breakbeforesymbolpre=\,\footnotesize\ensuremath{_{\color{white!60!black}\rfloor}},
 breakaftersymbolpre=\,\footnotesize\ensuremath{_{\color{white!60!black}\rfloor}},
 }

 \BeforeBeginEnvironment{minted}{
 \begin{tcolorbox}[
 enhanced,
 overlay={\fill[white!90!black] (frame.south west) rectangle ([xshift=2.8em]frame.north west);},
 colback=white!95!black,
 colframe=white!95!black, % make frame colour same as background
 breakable,% Allow white breaks
 arc=0pt,outer arc=0pt,sharp corners, % sharp corners
 boxsep=0pt,left=0pt,right=0pt,top=0pt,bottom=0pt % no margin/paddding
]
 }
 \AfterEndEnvironment{minted}{\end{tcolorbox}}
 \renewcommand\theFancyVerbLine{\color{black!60!white}\arabic{FancyVerbLine}} % minted line numbering
\usetheme[progressbar=foot]{metropolis}
\author{Timothy}
\date{2020-07-21}
\title{Org Mode}
\subtitle{The Emacs of plain-text formats}
\let\textsc\MakeUppercase
\definecolor{verbatim}{HTML}{50a14f}
\makeatletter \def\verbatim@font{\color{verbatim}\normalfont\ttfamily} \makeatother

\colorlet{greenyblue}{blue!70!green}
\colorlet{blueygreen}{blue!40!green}
\providecolor{link}{named}{greenyblue}
\providecolor{cite}{named}{blueygreen}
\hypersetup{
 pdfauthor={Timothy},
 pdftitle={Org Mode},
 pdfkeywords={},
 pdfsubject={},
 pdfcreator={Emacs 26.3 (Org mode 9.4)},
 pdflang={English},
 breaklinks=true,
 colorlinks=true,
 linkcolor=,
 urlcolor=link,
 citecolor=cite
}
\urlstyle{same}
\begin{document}

\maketitle

\section{Plain text formats}
\label{sec:plain-text-formats}
\begin{frame}[label={sec:known-uses},fragile]{Known uses}
 When I say ``plain text'', what comes to mind?
\pause

\begin{itemize}
\item Source code \pause
\item \texttt{README} files \pause
\item \LaTeX
\item \verb~HTML~
\end{itemize}

\pause
All of these essentially consist of content and markup/syntax.
\end{frame}
\begin{frame}[label={sec:markdown},fragile]{Markdown}
 The most common plaintext markup syntax, created in 2004.

\begin{minted}[,fontsize=\tiny]{md}
This is markdown

For **bold** we use twice as many asterics as neccesary, then use the same
charachter for *italic*. But wait there's another way to do _italics_, it just
seems like it should be underline. Thankfully there's only one way to do
[links](https://tecosaur.com), or is it (a link)[https://tecosaur.com]? Every so
often I forget the order, and then it's a pain. At least `inline-code` is simple.

By the way, did I mention there are about 40 functionally different markdown implementations?
(see [here](https://github.com/commonmark/commonmark-spec/wiki/markdown-flavors))
\end{minted}
\end{frame}
\begin{frame}[label={sec:org-mode},fragile]{Org-mode}
 A format developed within Emacs, created in 2003. Other systems have begun work
on supporting the format.

\begin{minted}[,fontsize=\tiny]{text}
* This is Org-mode

We have a single-emphasis-charachter *bold*, and sensible /italics/, which
makes a nice change.
There's only one way of doing [[*This is Org-mode][links]],
but unfortunately I now need to press shift for ~inline code~.

We also get =verbatim= though, and there's only one implementation of this,
so no fragmentation.
\end{minted}
\end{frame}
\begin{frame}[label={sec:one-moment}]{One moment\ldots{}}
From our \hyperlink{sec:known-uses}{first slide}, ``Content and markup''.

\pause
That applies to far more that the examples we listed.
Consider: \pause
\begin{itemize}
\item Presentations \pause
\item Spreadsheets \pause
\item (Uni) notes, \textls*[70]{\textsc{pkb}\protect\scalebox{.91}[.84]{s}}
\item Reports/Papers \pause
\item Interactive notebooks \pause
\item Books \pause
\item Todo lists / task management
\end{itemize}

\pause
That's \ldots{} a lot
\end{frame}

\begin{frame}[label={sec:consider-overlap}]{Consider the overlap}
For almost all of the different use cases just mentioned, we use a different app
for almost each use. In each app though, we spend most of our time just working
with text.

\pause
For a single task, we'll often use multiple apps, then struggle to weave a
workflow together involving them all. Most apps are well aware of this, and so
have put a good deal of effort into integrations (e.g. the Microsoft Office series).

\pause
Reflecting on this however, this state of affairs seems a bit sub-optimal.
\end{frame}

\begin{frame}[label={sec:example-comp-sci}]{Example --- Comp. Sci. Researcher}
Consider the following hypothetical, situation:

You are a computer science researcher. You have a nice idea which re-imagines
the standard method of implementing a common algorithm.
You want to try it out, then maybe write a paper/blog post.
\end{frame}

\begin{frame}[label={sec:comp-sci-researcher},fragile]{Comp Sci Researcher Hypothetical}
 \footnotesize
\begin{description}
\item[{Search the existing literature}] you'd want some sort of notes file, probably
a word doc (\texttt{.docx}), or other plaintext format (\texttt{.md}).
\item[{Write up you idea so you don't forget}] likely use a (second) word or \texttt{.md} doc, or if some
maths is involved --- \LaTeX{} (\texttt{.tex})
\item[{Test your idea}] Open up a notebook to prototype some code, using something
like Jupyter (\texttt{.ipynb})
\item[{Formally code your idea up}] Use you code editor of choice, and whatever language
\item[{Tabulate speed comparison}] A basic spreadsheet seems appropriate, \texttt{.xlsx}.
\item[{Write up a paper}] The industry standard is \LaTeX{} (\texttt{.tex})
\item[{Share a blog post on your website}] Convert aspects of you paper (\texttt{.tex}) to \texttt{.md} or
some other format that web \textls*[70]{\textsc{cms}} tools use, probably with examples from your
notebook (\texttt{.ipynb}) and maybe your speed comparison (\texttt{.xlsx})
\end{description}

Wow .. that's about six different applications/formats, and your work is spread
across about 5-8 files too!
\end{frame}
\begin{frame}[label={sec:note-workflow}]{A note on workflow}
You can do productive, maintainable and reproducible work with all kinds of
different software set-ups. So this discussion is not geared toward convincing
you there is 'One True Way' to organize things. I do think, however, that if you’re
in the early phase of your career, it's worth giving some thought to how you’re
going to organize and manage your work. Here, I will just try to detail one
particular method, and the features which I think make it a particularly worthy candidate.

\tiny
\emph{My paraphrased adaptation of Kieran's introduction in ``Choosing Your Workfow Applications''}
\end{frame}
\section{Org-mode}
\label{sec:-org-mode}
\begin{frame}[label={sec:whats-with-name}]{What's with the name?}
Why is ``mode'' in the name? \pause

It's because name of the emacs 'mode' that this format was designed/implemented in.
\end{frame}
\begin{frame}[label={sec:what-it}]{What is it?}
A plain text markup format, like we mentioned earlier.
\pause

It's designed to be easily manipulated by both humans (like markdown) and code
(like \textls*[70]{\textsc{json}}).

\pause
The mode supplies a syntax, and tools, for programmatically handling structured
text, and an ecosystem built upon that fundamental ability. And it runs inside
Emacs.
\end{frame}

\begin{frame}[label={sec:what-makes-it},fragile]{What makes it good?}
 Possibilities allowed for by that last paragraph. Particularly:

\begin{itemize}
\item The \emph{rich} functionally of the \texttt{Org-mode} mode
\item Org-babel
\item Integration
\end{itemize}
\end{frame}

\begin{frame}[label={sec:what-can-you}]{What can you do with it}
Now I demo a lot.

\pause
Please, please, \emph{please} talk to me.
We'll both get the most out of this if this segment is highly interactive.
\end{frame}

\begin{frame}[label={sec:resources}]{Resources}
\begin{itemize}
\item \href{https://github.com/hlissner/doom-emacs}{Doom Emacs}
\item \href{http://atomized.org/blog/2018/09/19/what-even-is-org-mode/}{What Even Is Org Mode? - Atomized}
\item \href{http://kieranhealy.org/files/misc/workflow-apps.pdf}{Choosing Your Workflow Application (pdf)}
\end{itemize}

And some recommendations:
\begin{itemize}
\item \href{http://pragmaticemacs.com/org-mode-tutorials/}{Org-mode tutorials | Pragmatic Emacs}
\item \href{https://www.youtube.com/watch?v=sQS06Qjnkcc\&list=PLVtKhBrRV_ZkPnBtt_TD1Cs9PJlU0IIdE}{OrgMode E01S01: Headlines \& outline mode - YouTube}
\end{itemize}
\end{frame}
\end{document}

