
Modal Editing

One mode just isn’t enough

Timothy

2020-06-25

’Normal’ editing

Standard keybindings

You’ll likely be used to some common shortcuts

Shortcut Action

Ctrl + a Select all
Ctrl + f Find
Ctrl + c Copy
Ctrl + v Paste
Ctrl + o Open
Ctrl + s Save
. . .

1

Application-specific keybindings

Word

Shortcut Action

Ctrl + Shift + <right> Select word to the right
Ctrl + Alt + z Cycle through previous (4) changes

VS Code

Shortcut Action

Ctrl + r Open recent
Alt + Shift + a Block comment
Ctrl + Alt + Shift + c Copy relative path of file
Ctrl + K, Ctrl + Alt + s Git, stage selected region

2

The problem with normal editing

The problem with normal editing

Shortcut overloading.

3

Mathematical shortcut limit

• 26 letters + 10 numbers + 12 (not-on-number) symbol keys +
12 function keys

• Ctrl, Alt, Shift modifiers, 4 possible combinations

• How many possible shortcuts?

4× (26+ 10+ 12) + 3× 12 = 228

That’s . . . a lot? Actually, once you consider all the different
categories of things, it’s not that many — hence clunky shortcuts
like Ctrl + Alt + Shift + c.

4

Mathematical shortcut limit

• 26 letters + 10 numbers + 12 (not-on-number) symbol keys +
12 function keys

• Ctrl, Alt, Shift modifiers, 4 possible combinations

• How many possible shortcuts?

4× (26+ 10+ 12) + 3× 12 = 228

That’s . . . a lot?

Actually, once you consider all the different
categories of things, it’s not that many — hence clunky shortcuts
like Ctrl + Alt + Shift + c.

4

Mathematical shortcut limit

• 26 letters + 10 numbers + 12 (not-on-number) symbol keys +
12 function keys

• Ctrl, Alt, Shift modifiers, 4 possible combinations

• How many possible shortcuts?

4× (26+ 10+ 12) + 3× 12 = 228

That’s . . . a lot? Actually, once you consider all the different
categories of things, it’s not that many — hence clunky shortcuts
like Ctrl + Alt + Shift + c.

4

Solution? Add a prefix key (VS Code style)

• VS Code reserves Ctrl + K to be used as a prefix for a second
shortcut

• This increases the number of shortcuts to 452
• More flexibility is good!

. . . but it’s also even more clunky :(

• Ctrl + K, Ctrl + Alt + s

5

Solution? Add a prefix key (VS Code style)

• VS Code reserves Ctrl + K to be used as a prefix for a second
shortcut

• This increases the number of shortcuts to 452
• More flexibility is good! . . . but it’s also even more clunky :(

• Ctrl + K, Ctrl + Alt + s

5

Solution! Modal editing

6

Modal Editing

Observation: There are way more keys than modifiers

• 3 modifier keys (Ctrl, Alt, Shift)
• 48 ASCII character keys

• If only there was some way we could use them. . .

Think of how much time you spend editing

7

Observation: There are way more keys than modifiers

• 3 modifier keys (Ctrl, Alt, Shift)
• 48 ASCII character keys

• If only there was some way we could use them. . .

Think of how much time you spend editing

7

Use them keys

• Turn ’normal’ typing text into a special case

• The opens up the possibility to use every single key for an action

8

Use them keys — how?

• Define different modes

• Start off in a default mode

• From the default mode, move to other modes using any key

• Leave a mode with Esc
• This opens up every single key for use in actions

9

Use them keys — an example

• Let’s call the default mode normal

• Let’s call the you-see-what-you-type behaviour (that you’re
used to) insert mode

• Type i to enter insert mode, type like you’re in any other app

• Press Esc and you go back to normal mode

10

The mathematical advantage

• Use up to three keys in a row

• Each key can be any letter, number, symbol + usual modifiers

• (26+ 10+ 12)× 4 = 192 options

• How many possible keybindings can we use now?

1923 = 7 077 888

This is a huge increase from the 192 possibilities ’normally’, in fact
this is a factor of 36-thousand more!

11

The mathematical advantage

• Use up to three keys in a row

• Each key can be any letter, number, symbol + usual modifiers

• (26+ 10+ 12)× 4 = 192 options

• How many possible keybindings can we use now?

1923 = 7 077 888

This is a huge increase from the 192 possibilities ’normally’, in fact
this is a factor of 36-thousand more!

11

The mnemonic advantage

You are no longer forced to use weird keybindings.

With so many options, one can design mnemonic categories of
keybindings. E.g. put actions to do with deletion under d, etc.

12

The ergonomic advantage

I no longer feel like I have to be part-human, part-spider to use
uncommon shortcuts.

13

The capability curve

Normal Text Editor
Modal Text Editor

Phases:
1. WTF?
2. Clunky
3. Eh, it’s alright
4. I like this
5. OMG!

14

Vim

What is it?

• An old text editor

• An old modal text editor

• Despite being ~30 years old, people still use it

• Clearly it did something right (modal editing)

15

What is it?

• An old text editor

• An old modal text editor

• Despite being ~30 years old, people still use it

• Clearly it did something right (modal editing)

15

A quick history

• Rewrite of the vi editor (which Bill Joy created in 1976)
• Motivation for creation:

• George Coulouris worked at AT&T
• The ’default’ editor at the time was nasty and clunky
• George had an idea for a better way (em)
• Bill Joy is impressed, re-implements favourite ideas (vi)

• The hardware back then looked a bit different

There is no mouse and you cannot click!

16

The (main) vim modes

• Normal mode — the . . . normal mode (default)

• Insert mode — type text normally

• Visual Mode — select text

17

A simple diagram

Normal Mode

Insert Mode Visual Mode

Es
c

i
I
a
A
o
O

 V
 v

Es
c

c r R g :
Others

18

Modal madness

Ctrl-X Mode

Ctrl-X (Insert Completion) Mode

Return to
Insert or Replace Mode

Enter from
Insert or Replace Mode

Ctrl-X

After leaving Completion Mode

Enter Special Character State Diagram

Special Character Pending

up to 4
hex digits

[0-9a-fA-F]{0,4}

up to 8
hex digits

[0-9a-fA-F]{0,8}

up to 4
hex digits

[0-9a-fA-F]{0,4}

up to 3
octal digits
[0-7]{0,3}

Special Character
Except: [0-9XoOxXuU]

UuXxOo

up to 3
decimal digits

[0-9]{0,3}

Return to
Insert, Replace, or Virtual Replace Mode

or Normal Mode if coming from one of the Replace Character Pending Modes

Ctrl-V Ctrl-Q

Enter from
Insert, Replace, Virtual Replace Mode
or one of the Replace Character Pending Modes

C
tr

l-X
 M

od
e

C
tr

l-X
 M

od
e

S
pe

ci
al

 C
ha

ra
ct

er

S
pe

ci
al

 C
ha

ra
ct

er

S
pe

ci
al

 C
ha

ra
ct

er

Replace Character Pending Modes

Replace Character
Pending

Virtual Replace
Character Pending

S
pe

ci
al

 C
ha

ra
ct

er
Visual Modes

Visual

Visual Line

Visual Block

Ctrl-V

Vv

Ctrl-V

v

V

Replace Modes

Replace

Virtual
Replace

Select Modes

Select BlockSelect LineSelect

Insert Visual Modes

Insert Visual Line

Insert Visual Block

Insert Visual

Insert Select Modes

Insert Select Line

Insert Select Block

Insert Select

Operator Pending

Note(s)

Esc Ctrl-[

i I o Oa A

Ctrl-C

gR

:vi

Ctrl-GCtrl-G

Ctrl-O

:!/: ? Ctrl-VVv

Insert

Insert

:start

:

Ctrl-O

Q R

c

C

Normal Mode
Command Insert

Normal

Command-Line
(Cmdline)

Ex

Insert

Normal (Command)

Normal (Command)

Esc

Esc

Esc

!

gI

Esc

s S

Visual Mode
Command

Select Visual

g Ctrl-HgHgh

Printable Character, NL, or CR

Esc

Esc

Esc

Ctrl-V

V

v

g Ctrl-H

gH

gh

Ctrl-GCtrl-G

Esc

Esc

Visual Mode
Command

Select Mode
Command

operator

CR

I

A

VIM Modes Transition Diagram By darcyparker@gmail.com Draft (3/19/2012. But not released as a new draft) Feedback welcome

:startreplace

It's called 'Operator Pending',
but it seems a better name would

be 'Motion Pending'.

r

:startgreplace

motion or
text object

c

Printable
Character,
NL or CR

C cc operatorEsc

motion or
text object

Ctrl-C

r

Esc

Ctrl-X Ctrl-X

v V Ctrl-V

gv

gv

Ctrl-C

Ctrl-C

s

S

R

J

gJ

u

U

g?

Ctrl-V

Ctrl-Q

Ctrl-V

Ctrl-Q

gi

Ctrl-C

gr

gr

Note: Esc does not cancel in this mode. Esc enters ^[character!
In fact any special character, such as <Tab>, can be entered directly.

Ctrl-C

Ctrl-C

Stops visual mode

Ctrl-C

Esc

undocumented

Ctrl-C

Ctrl-O

Visual Replace Character Pending

Visual Virtual Replace Character Pending

Printable and
some Special

CharactersEsc Ctrl-C

Printable
Character,
NL or CR Ctrl-V Ctrl-Q Ctrl-QCtrl-V

Note: s is equivalent to c from visual mode

Note: R is equivalent to S in visual mode (Vim help says R may change after Vim 7.3?)
Also note, S is overridden by the surround.vim plugin from visual mode.

Equivalent

19

Let’s learn Vim

The Basics

Vim is the name of the terminal command, vim. Please don’t be
scared of terminals, they’re really quite simple. To open file.txt
in vim, just run vim file.txt.

From there you can edit text just knowing this

• Press i to enter insert mode, and type some text

• Press Esc to stop writing text (go to normal mode)

• Type :wq to save your file and exit.

20

The Basics

Vim is the name of the terminal command, vim. Please don’t be
scared of terminals, they’re really quite simple. To open file.txt
in vim, just run vim file.txt.

From there you can edit text just knowing this

• Press i to enter insert mode, and type some text

• Press Esc to stop writing text (go to normal mode)

• Type :wq to save your file and exit.

20

The Basics — exiting Vim

• Type :wq to save your file and exit.

21

A little bit more

For going through your edits

• u undoes the last change

• Ctrl + r re-does the last change

For making and using text selections

• v to start a selection

• y to yank (copy) the text to the clipboard

• p to paste

• d to delete

Demo

22

../Demos/1-basics.txt

More Vim

Aside — shortened shortcut notation

• We can do better than typing Ctrl + a, or Shift + i each
time.

• So, we perform the following contractions
• Shift + a becomes A
• Control + a becomes C-a
• Alt + a becomes M-a1

• Control + Alt + Shift + a becomes C-M-A
isn’t that easier?

1M not A because Alt used to be called Meta

23

Insert Mode

• Enter using one of i I a A o O gi
• i insert at point
• I insert at start of line
• a insert after point
• A insert at end of line
• o insert on new line above
• O insert on new line below
• gi insert at last edit

• C-w to delete the last word

• C-u to delete the last line (this is the same as dd in normal
mode)

Think about the mnemonics in your head.

Demo

24

../Demos/2-insert.txt

Insert Mode

• Enter using one of i I a A o O gi
• i insert at point
• I insert at start of line
• a insert after point
• A insert at end of line
• o insert on new line above
• O insert on new line below
• gi insert at last edit

• C-w to delete the last word

• C-u to delete the last line (this is the same as dd in normal
mode)

Think about the mnemonics in your head.

Demo

24

../Demos/2-insert.txt

Visual mode

• Make a selection using on of v V C-v gv
• v visual character mode
• V visual line mode
• C-v visual block mode (rectangle)
• gv last visual selection

• o switch between start/end of selection

• grow/shrink selection with normal cursor movement

Demo

25

../Demos/3-visual.txt

Visual mode

• Make a selection using on of v V C-v gv
• v visual character mode
• V visual line mode
• C-v visual block mode (rectangle)
• gv last visual selection

• o switch between start/end of selection

• grow/shrink selection with normal cursor movement

Demo

25

../Demos/3-visual.txt

’Quick’ actions

• Some action don’t need a selection to act on

• If you press the key twice, they’ll simply act on the current line

• This works for
• dd delete line
• yy yank (copy) line
• cc change line
• == re-indent line
• >> shift line right
• << shift line left

• You can also use x to delete the character under the cursor, or
the active selection, and r to replace the character.

26

’Quick’ actions

• Some action don’t need a selection to act on

• If you press the key twice, they’ll simply act on the current line

• This works for
• dd delete line
• yy yank (copy) line
• cc change line
• == re-indent line
• >> shift line right
• << shift line left

• You can also use x to delete the character under the cursor, or
the active selection, and r to replace the character.

26

’Quick’ actions

• Some action don’t need a selection to act on

• If you press the key twice, they’ll simply act on the current line

• This works for
• dd delete line
• yy yank (copy) line
• cc change line
• == re-indent line
• >> shift line right
• << shift line left

• You can also use x to delete the character under the cursor, or
the active selection, and r to replace the character.

26

Actions on a selection

• d delete

• c change content (delete and enter insert mode)

• y (yank) copy selection to clipboard

• ~ swap case

• u make lowercase

• U make uppercase

Demo

27

../Demos/4-simple-actions.txt

Actions on a selection

• d delete

• c change content (delete and enter insert mode)

• y (yank) copy selection to clipboard

• ~ swap case

• u make lowercase

• U make uppercase

Demo

27

../Demos/4-simple-actions.txt

More actions on a selection

• ! run selection though an external program

• = re-indent

• > shift right

• < shift left

Demo

28

../Demos/5-simple-code-actions.py

Text objects

• Used while in visual mode, or after an action (e.g. d for delete)

• Performed from the current cursor

• Can be prefixed with i or a
• i selects the ’inner’ object
• a selects the ’outer’ object

29

Text objects — a list

• w word

• p paragraph

• b brackets, or () , [], {}, <> if you want to be specific

• ' or " for quoted text

30

Text objects — an example

as

Here is some text. Isn’t that nice (yes it is).

w iw aw ab

is

Often one likes to "manipulate" text. Applications
ip often make text easy to write, clunky to edit.
ap

That’s why modal editing is nice.

Demo 31

../Demos/6-simple-objects.txt

Movements

Has the same effect as arrow keys, Home, and End.

Used for moving the current cursor, and shrinking/growing a
selection.

32

Movements — overview

33

Movements — put another way

Micro

target forwards forward upto backwards back upto

word w e b ge
x f x t x F x T x

Macro

target start end

line 0
line content ^ $
sentence ()
paragraph { }
document gg G
page C-b C-f

34

Movements — an example

gg
{ w fc tl $
↓ ↓ ↓ ↓ ↓
Pretend there is a cursor at the start of this line,
then look around at the various movements.

↑
0 ^ Tc Fd) }
↓ ↓ ↓ ↓ ↓

Pretend the cursor is at the end of this now.
↑
G

Demo (Prose) Demo (Code)

35

../Demos/7-movements-prose.txt
../Demos/8-movements-objects-code.py

Count prefix

Want to do something multiple times, for example not just delete
the next word (dw), but the next three words?

It’s easy! Just type the number of times you want to do it before or
during the action.

In this example, 3-delete-word (3dw) or delete-3-words (d3w) does
the trick.

This works for everything though, not just words :)

36

Structure of a vim operation

Count
��������

Action
Text Object

MovementMacro

Register

Count
��������

"ayabd5w 7@a Uib^ci'
��������

=iap

37

Command mode

• A way to tell vim to do non-text-editing stuff

• Enter command mode with :
• This is how you:

• :w write a file
• :q quit vim
• :wq write a file, and quit
• and more

38

Even more Vim

Oh yes, there’s more

You’ve just seen how to perform ’basic’ operations in vim.

Don’t worry, while it may look intimidating, if you try this out you’ll
find yourself picking it up quickly — the mnemonic-ness helps a lot.

Vim does a bit more though, so we’ll go over that for fun (and
profit).

39

Marks — saving

• A way to save a position

• Save the current location with m? where ? is a letter (a-z)
which serves as a unique identifier

• Lower case letters are local to the file
• Upper case letters work globally

40

Marks — accessing

• 'a goes to the line of mark a
• `a goes to the position of a
• '' and `` go to your last line/position respectively

• '. / `. goes to the line/position of the last edit

Demo

41

../Demos/9-marks.txt

Search

• / search forwards

• ? search backwards

• n next result

• N previous result

• * search forwards, for word under cursor

• # search backwards, for word under cursor

Demo

42

../Demos/10-search.txt

Search

• / search forwards

• ? search backwards

• n next result

• N previous result

• * search forwards, for word under cursor

• # search backwards, for word under cursor

Demo

42

../Demos/10-search.txt

Replace

• :s/pattern/replacement
acts on the current line

• :%s/pattern/replacement
acts on the current file

• :'<,'>s/pattern/replacement
acts on the current selection

• You can use regex: \(...\) to match, \1 to reference
• The general syntax is

:[range]s/{pattern}/{replacement}/[flags] [count]

• 3 of the flags are: c to confirm each substitution, g to replace
all occurrences on a line, and i to ignore case

Demo

43

../Demos/11-replace.txt

Replace

• :s/pattern/replacement
acts on the current line

• :%s/pattern/replacement
acts on the current file

• :'<,'>s/pattern/replacement
acts on the current selection

• You can use regex: \(...\) to match, \1 to reference

• The general syntax is
:[range]s/{pattern}/{replacement}/[flags] [count]

• 3 of the flags are: c to confirm each substitution, g to replace
all occurrences on a line, and i to ignore case

Demo

43

../Demos/11-replace.txt

Replace

• :s/pattern/replacement
acts on the current line

• :%s/pattern/replacement
acts on the current file

• :'<,'>s/pattern/replacement
acts on the current selection

• You can use regex: \(...\) to match, \1 to reference
• The general syntax is

:[range]s/{pattern}/{replacement}/[flags] [count]

• 3 of the flags are: c to confirm each substitution, g to replace
all occurrences on a line, and i to ignore case

Demo

43

../Demos/11-replace.txt

Registers

• Like marks, just for your text.

• You can basically save text to a named spot.

• "a to "z save the selected text set a register.

• "A to "Z add the selection to the register

• You need to add an action, e.g.
• "ay yanks (copies) an active selection to register a
• "ayvap yanks (copies) the current paragraph to register a
• "ap pastes the content of register a
• "Ayiw adds the current word to register a

Demo

44

../Demos/12-registers.txt

Registers

• Like marks, just for your text.

• You can basically save text to a named spot.

• "a to "z save the selected text set a register.

• "A to "Z add the selection to the register

• You need to add an action, e.g.
• "ay yanks (copies) an active selection to register a
• "ayvap yanks (copies) the current paragraph to register a
• "ap pastes the content of register a
• "Ayiw adds the current word to register a

Demo

44

../Demos/12-registers.txt

Macros (mini)

. repeats the last action
Demo

45

../Demos/13-dot-macro.txt

Recording a named macro

• qa starts recording a macro saved to a
• do the thingsTM

• q to stop recording

46

Using a named macro

• @a to execute macro a
• @@ to execute the last macro

• 22@a to execute a 22 times. . .

47

Editing an existing macro

• You can just use the register functionality

• "ap pastes the content of macro a
• Edit, select new macro content

• "ay writes to the macro a

48

A named macro — example

qs $ S) Ret "ayib dab x ^ "aP a : Spc Esc ^ <down> q

What does that do!?
• $ go to end of line

• S) search backwards for)
• Ret go to the first match

• "ayib copy the content of the parenthesis to register a
• dab delete the parenthesised content

• x delete the current character

• ^ go to the start of the content

• "aP paste content of register a
• a : Spc Esc enter insert mode after the content, and add “: ”

before returning to normal mode

• ^ go to the start of the content

• <down> move the cursor down one line

49

A named macro — example

qs $ S) Ret "ayib dab x ^ "aP a : Spc Esc ^ <down> q
What does that do!?

• $ go to end of line

• S) search backwards for)
• Ret go to the first match

• "ayib copy the content of the parenthesis to register a
• dab delete the parenthesised content

• x delete the current character

• ^ go to the start of the content

• "aP paste content of register a
• a : Spc Esc enter insert mode after the content, and add “: ”

before returning to normal mode

• ^ go to the start of the content

• <down> move the cursor down one line

49

A named macro — example explained

Ok, what does that really do?

• Find the last parenthesised content in a line, take it out and
bring it to the front

If one called it on the following line for example

I need to make some slides (Due Thursday) on vim

becomes

Due Thursday: I need to make some slides on vim

Demo

50

../Demos/14-named-macro.txt

This seems like a lot of work

It is, but it’s easy to gradually build your skill. We spend so much
time editing text that I think it’s worth using a method which
improves the experience, even if it takes a bit of time to learn.

Figure 1: *

Is It Worth the Time? Don’t forget the time you spend finding
the chart to look up what you save. And the time spent reading this
reminder about the time spent. And the time trying to figure out if
either of those actually make sense. Remember, every second counts

toward your life total, including these right now.

51

Resources

• A nice big Vim Cheat Sheet

• Vim functions overlayed on a keyboard

• Interactive Vim tutorial: https://www.openvim.com/

• Vim navigation in Firefox: tridactyl (add-on page)

• Vim navigation in Chrome: https://vimium.github.io/

• Blog post: Everyone Who Tried to Convince Me to use Vim
was Wrong

• vimtutor is a little tool that comes bundled with vim

52

https://vim.rtorr.com/
https://www.glump.net/_media/howto/desktop/vim-graphical-cheat-sheet-and-tutorial/vi-vim-cheat-sheet-and-tutorial.pdf
https://www.openvim.com/
https://github.com/tridactyl/tridactyl
https://addons.mozilla.org/en-us/firefox/addon/tridactyl-vim/
https://vimium.github.io/
https://yehudakatz.com/2010/07/29/everyone-who-tried-to-convince-me-to-use-vim-was-wrong/
https://yehudakatz.com/2010/07/29/everyone-who-tried-to-convince-me-to-use-vim-was-wrong/

Q&A

	'Normal' editing
	The problem with normal editing
	Modal Editing
	Vim
	Let's learn Vim
	More Vim
	Even more Vim
	Q&A

#+TITLE: Modal Editing
#+SUBTITLE: One mode just isn't enough
#+AUTHOR: Timothy
#+DATE: 2020-06-25
#+OPTIONS: toc:nil
#+PROPERTY: header-args:text :comments no :exports none
#+PROPERTY: header-args:python :comments no :exports none

#+LATEX_CLASS: chameleon
#+LATEX_HEADER: \usepackage{microtype}
#+LATEX_HEADER: \usepackage{booktabs}
#+LATEX_HEADER: \usepackage[scale=0.9]{sourcecodepro}
#+LATEX_HEADER: \usepackage{pmboxdraw}
#+LATEX_HEADER: \usepackage[main]{embedall}
#+LATEX_HEADER: \embedfile{"Modal Editing".org}
#+BEAMER_HEADER: \let\textsc\MakeUppercase
#+BEAMER_HEADER: \definecolor{verbatim}{HTML}{50a14f}
#+BEAMER_HEADER: \makeatletter \def\verbatim@font{\color{verbatim}\normalfont\ttfamily} \makeatother

* Setup :noexport:
#+NAME: reset-demos
#+BEGIN_SRC shell :results none
rm -r ../Demos
mkdir ../Demos
#+END_SRC
* 'Normal' editing
** Standard keybindings
You'll likely be used to some common shortcuts
| Shortcut | Action |
|----------+------------|
| =Ctrl + a= | Select all |
| =Ctrl + f= | Find |
| =Ctrl + c= | Copy |
| =Ctrl + v= | Paste |
| =Ctrl + o= | Open |
| =Ctrl + s= | Save |
| ... | |
** Application-specific keybindings
*** Word
| Shortcut | Action |
|------------------------+------------------------------------|
| =Ctrl + Shift + <right>= | Select word to the right |
| =Ctrl + Alt + z= | Cycle through previous (4) changes |
*** VS Code
| Shortcut | Action |
|--------------------------+----------------------------|
| =Ctrl + r= | Open recent |
| =Alt + Shift + a= | Block comment |
| =Ctrl + Alt + Shift + c= | Copy relative path of file |
| =Ctrl + K, Ctrl + Alt + s= | Git, stage selected region |
* The problem with normal editing
** The problem with normal editing
Shortcut overloading.
** Mathematical shortcut limit
+ 26 letters + 10 numbers + 12 (not-on-number) symbol keys + 12 function keys
+ =Ctrl=, =Alt=, =Shift= modifiers, 4 possible combinations
+ How many possible shortcuts? \pause
\[
 4 \times (26+10+12) + 3 \times 12 = 228
\]

That's ... a lot? \pause Actually, once you consider all the different categories of
things, it's not that many --- hence clunky shortcuts like =Ctrl + Alt + Shift + c=.
** Solution? Add a prefix key (VS Code style)
+ VS Code reserves =Ctrl + K= to be used as a prefix for a second shortcut
+ This increases the number of shortcuts to
 src_calc[:results raw]{2*228 - 4} {{{results(=452=)}}}
+ More flexibility is good! \pause ...but it's also even more clunky :(
+ =Ctrl + K, Ctrl + Alt + s=
** Solution! Modal editing
#+ATTR_LATEX: :height 0.7\linewidth
[[file:lord-saviour-vim.jpg]]
* Modal Editing
** Observation: There are /way/ more keys than modifiers
+ 3 modifier keys (=Ctrl=, =Alt=, =Shift=)
+ 48 ASCII character keys
+ If only there was some way we could use them...
\pause
/Think of how much time you spend editing/
** Use them keys
+ Turn 'normal' typing text into a special case
+ The opens up the possibility to use every single key for an action
** Use them keys --- how?
+ Define different *modes*
+ Start off in a default mode
+ From the default mode, move to other modes using any key
+ Leave a mode with =Esc=
+ This opens up /every single key/ for use in actions
** Use them keys --- an example
+ Let's call the default mode *normal*
+ Let's call the you-see-what-you-type behaviour (that you're used to) *insert* mode
+ Type =i= to enter *insert* mode, type like you're in any other app
+ Press =Esc= and you go back to *normal* mode
** The mathematical advantage
+ Use up to three keys in a row
+ Each key can be any letter, number, symbol + usual modifiers
+ \((26 + 10 + 12) \times 4 = 192\) options
+ How many possible keybindings can we use now? \pause
\[
 192^3 = 7\,077\,888
\]

This is a /huge/ increase from the 192 possibilities 'normally', in fact this is a
factor of 36-thousand more!
** The mnemonic advantage
You are no longer forced to use weird keybindings.

With so many options, one can design mnemonic categories of keybindings. E.g.
put actions to do with deletion under =d=, etc.
** The ergonomic advantage
I no longer feel like I have to be part-human, part-spider to use uncommon shortcuts.
** The capability curve
#+ATTR_LATEX: :width 0.7\linewidth
[[file:learning-curve.pdf]]
Phases:
\vspace{-3mm}
1. WTF?
2. Clunky
3. Eh, it's alright
4. I like this
5. OMG!
* Vim
Nice resource --- [[https://inside.github.io/vim-presentation/][The VIM presentation]]
** What is it?
+ An old text editor
+ An old *modal* text editor
+ Despite being @@latex:\raisebox{0.5ex}{\texttildelow}@@@@html:~@@30 years old,
 people still use it \pause
+ Clearly it did something right (modal editing)
** A quick history
+ Rewrite of the ~vi~ editor (which Bill Joy created in 1976)
+ Motivation for creation:
 - George Coulouris worked at AT&T
 - The 'default' editor at the time was nasty and clunky
 - George had an idea for a better way (~em~)
 - Bill Joy is impressed, re-implements favourite ideas (~vi~)
+ The hardware back then looked a bit different
#+ATTR_LATEX: :height 0.2\linewidth
[[file:adm-3a terminal keyboard.png]]

There is no mouse and you cannot click!

** The (main) vim modes
+ *Normal* mode --- the ... normal mode (default)
+ *Insert* mode --- type text normally
+ *Visual* Mode --- select text
** A simple diagram
[[file:simple-mode-flow.pdf]]
** Modal madness
https://gist.github.com/darcyparker/1886716
#+ATTR_LATEX: :width \linewidth
[[file:vimModeStateDiagram.pdf]]
* Let's learn Vim
** The Basics
Vim is the name of the terminal command, ~vim~.
Please don't be scared of terminals, they're really quite simple.
To open ~file.txt~ in vim, just run ~vim file.txt~. \pause

From there you can edit text just knowing this
+ Press =i= to enter *insert* mode, and type some text
+ Press =Esc= to stop writing text (go to *normal* mode)
+ Type =:wq= to save your file and exit.
** The Basics --- exiting Vim
[[file:cant-exit-vim-tweet-alpha.png]]
+ Type =:wq= to save your file and *exit*.
** A little bit more
For going through your edits
+ =u= undoes the last change
+ =Ctrl + r= re-does the last change

For making and using text selections
+ =v= to start a selection
+ =y= to yank (copy) the text to the clipboard
+ =p= to paste
+ =d= to delete

[[file:../Demos/1-basics.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/1-basics.txt"
Just a demo of the basics.

I'll insert some stuff.
Maybe copy/paste/delete some stuff.

IMPORTANT!
Notice how in Vim the cursor isn't BETWEEN
charachters, but instead ON them.
#+END_SRC
* More Vim
** Aside --- shortened shortcut notation
+ We can do better than typing =Ctrl + a=, or =Shift + i= each time.
+ So, we perform the following contractions
 - =Shift + a= becomes =A=
 - =Control + a= becomes =C-a=
 - =Alt + a= becomes =M-a=[fn:: =M= not =A= because =Alt= used to be called =Meta=]
 - =Control + Alt + Shift + a= becomes =C-M-A= \\
 /isn't that easier?/
** Insert Mode
+ Enter using one of =i I a A o O gi=
 - =i= insert at point
 - =I= insert at start of line
 - =a= insert after point
 - =A= insert at end of line
 - =o= insert on new line above
 - =O= insert on new line below
 - =gi= insert at last edit
 \pause
+ =C-w= to delete the last word
+ =C-u= to delete the last line (this is the same as =dd= in normal mode)

/Think about the mnemonics in your head./

[[file:../Demos/2-insert.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/2-insert.txt"
The cursor is a block.
Sometimes one wants to insert text at the start,
one can do this with 'i'.
Other times at the end, this is done with 'a'.

This is extended to lines, by using the capital
letters 'I' and 'A'.

Sometimes you also want to add text on the line above/below.
There are likewise commands for this, 'O' and 'o'.

While typing, typos are common. For short words I know I just
re-type them. This is where 'C-w' comes in handy.
'C-u' does the same thing for lines.
#+END_SRC
** Visual mode
+ Make a selection using on of =v V C-v gv=
 - =v= visual *character* mode
 - =V= visual *line* mode
 - =C-v= visual *block* mode (rectangle)
 - =gv= last visual selection
 \pause
+ =o= switch between start/end of selection
+ grow/shrink selection with normal cursor movement

[[file:../Demos/3-visual.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/3-visual.txt"
It's good to have stuff to select.
To that end, here are a few lines of content.
You can use 'v' to select a few words/charachters,
or 'V' to select some lines.

'gv' is pretty handy for just activating the last selection :)
#+END_SRC
** 'Quick' actions
+ Some action don't need a selection to act on
+ If you press the key twice, they'll simply act on the current line
 \pause
+ This works for
 - =dd= delete line
 - =yy= yank (copy) line
 - =cc= change line
 - ==== re-indent line
 - =>>= shift line right
 - =<<= shift line left
 \pause
+ You can also use =x= to delete the character under the cursor, or the active
 selection, and =r= to replace the character.
** Actions on a selection
+ =d= delete
+ =c= change content (delete and enter insert mode)
+ =y= (yank) copy selection to clipboard
 \pause
+ =~= swap case
+ =u= make lowercase
+ =U= make uppercase

[[file:../Demos/4-simple-actions.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/4-simple-actions.txt"
Here's some text to affect

Delete some lines, start here,
delete me to,
and delete me last.

This line should be different.
Be the change you want to see in this line.

UPPERCASE and lowercase, mIxED tGeTheR.
#+END_SRC
** /More/ actions on a selection
+ =!= run selection though an external program
+ === re-indent
+ =>= shift right
+ =<= shift left

[[file:../Demos/5-simple-code-actions.py][Demo]]
#+BEGIN_SRC python :tangle "../Demos/5-simple-code-actions.py"
class demo:
 def __init__(self):
 print("Something")
 print("dodgy indenting")

 def simple_loop(self, n):
 for i in range(n):
 print(n-i)
 print(i+n)

def class_func(self):
 print("I should be indented")
#+END_SRC
** Text objects
+ Used while in visual mode, or after an action (e.g. =d= for delete)
+ Performed from the current cursor
+ Can be prefixed with =i= or =a=
 - =i= selects the 'inner' object
 - =a= selects the 'outer' object
** Text objects --- a list
+ =w= word
+ =p= paragraph
+ =b= brackets, or =()= , =[]=, ={}=, =<>= if you want to be specific
+ ='= or ="= for quoted text
** Text objects --- an example
#+BEGIN_EXAMPLE
 as
 ┌───────────────────────────┐
 Here is some text. Isn't that nice (yes it is).
 └────┘ └──┘ └───┘ └─────────┘
 w iw aw ab

 is
 ┌───────────────────────────────────┐
 ┌Often one likes to "manipulate" text. Applications
ip├often make text easy to write, clunky to edit.
ap└

 That's why modal editing is nice.
#+END_EXAMPLE

[[file:../Demos/6-simple-objects.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/6-simple-objects.txt"
Here is some text. Isn't that nice (yes it is).

Often one likes to "manipulate" text. Applications
often make text easy to write, clunky to edit.

That's why modal editing is nice.
#+END_SRC
** Movements
Has the same effect as arrow keys, =Home=, and =End=.

Used for moving the current cursor, and shrinking/growing a selection.
** Movements --- overview
#+ATTR_LATEX: :width 1\linewidth
[[file:vim-movements.png]]
** Movements --- put another way
*** Micro
@@latex:\vspace{-4mm}@@
| target | forwards | forward upto | backwards | back upto |
|--------+----------+--------------+-----------+-----------|
| word | =w= | =e= | =b= | =ge= |
| /x/ | =f= /x/ | =t= /x/ | =F= /x/ | =T= /x/ |
@@latex:\vspace{-4mm}@@
*** Macro
@@latex:\vspace{-4mm}@@
| target | start | end |
|--------------+-------+-----|
line	=0=	
line content	=^=	=$=
sentence	=(=	=)=
paragraph	={=	=}=
document	=gg=	=G=
page	=C-b=	=C-f=
** Movements --- an example
#+BEGIN_EXAMPLE
gg
{ w fc tl $
↓ ↓ ↓ ↓ ↓
Pretend there is a cursor at the start of this line,
then look around at the various movements.
 ↑
0 ^ Tc Fd) }
↓ ↓ ↓ ↓ ↓
 Pretend the cursor is at the end of this now.
 ↑
 G
#+END_EXAMPLE

[[file:../Demos/7-movements-prose.txt][Demo (Prose)]]
#+BEGIN_SRC text :tangle "../Demos/7-movements-prose.txt"
The key to success is to keep your head above the water, never give up. The
first of the month is coming, we have to get money, we have no choice. It cost
money to eat and they don’t want you to eat. Eliptical talk. Congratulations,
you played yourself. Congratulations, you played yourself. Learning is cool, but
knowing is better, and I know the key to success. Always remember in the jungle
there’s a lot of they in there, after you overcome they, you will make it to
paradise. The key to success is to keep your head above the water, never give
up.

Always remember in the jungle there’s a lot of they in there, after you overcome
they, you will make it to paradise. Watch your back, but more importantly when
you get out the shower, dry your back, it’s a cold world out there. Celebrate
success right, the only way, apple. Mogul talk. You do know, you do know that
they don’t want you to have lunch. I’m keeping it real with you, so what you
going do is have lunch. In life there will be road blocks but we will over come
it. They key is to have every key, the key to open every door.

Celebrate success right, the only way, apple. Life is what you make it, so let’s
make it. I told you all this before, when you have a swimming pool, do not use
chlorine, use salt water, the healing, salt water is the healing. I’m up to
something. They don’t want us to eat. The key to success is to keep your head
above the water, never give up. The weather is amazing, walk with me through the
pathway of more success. Take this journey with me, Lion! Surround yourself with
angels, positive energy, beautiful people, beautiful souls, clean heart, angel.
#+END_SRC
\qquad
[[file:../Demos/8-movements-objects-code.py][Demo (Code)]]
#+BEGIN_SRC python :tangle "../Demos/8-movements-objects-code.py"
class demo:
 def __init__(self):
 print("Refer to an argument with 'a'")
 print("This print has a " + " few", "arguments", end=".")

 def simple_loop(self, n):
 for i in range(n):
 print(n-i)
 print(i+n)

 def class_func(self):
 print("Select a function with 'f'")
#+END_SRC
** Count prefix
Want to do something multiple times, for example not just delete the next word (=dw=),
but the next three words?

It's easy! Just type the number of times you want to do it /before/ or /during/ the action.

In this example, 3-delete-word (=3dw=) or delete-3-words (=d3w=) does the trick.

This works for everything though, not just words :)
** Structure of a vim operation
#+ATTR_LATEX: :width 1\linewidth
[[file:vim-command-structure.pdf]]
** Command mode
+ A way to tell vim to do non-text-editing stuff
+ Enter command mode with =:=
+ This is how you:
 - =:w= write a file
 - =:q= quit vim
 - =:wq= write a file, and quit
 - and more
* Even more Vim
** Oh yes, there's more
You've just seen how to perform 'basic' operations in vim.

Don't worry, while it may look intimidating, if you try this out you'll find
yourself picking it up quickly --- the mnemonic-ness helps a lot.

Vim does a bit more though, so we'll go over that for fun (and profit).
** Marks --- saving
+ A way to save a position
+ Save the current location with =m?= where =?= is a letter (a-z) which serves as a
 unique identifier
 - Lower case letters are local to the file
 - Upper case letters work globally
** Marks --- accessing
+ ='a= goes to the *line* of mark =a=
+ =`a= goes to the *position* of =a=
+ =''= and =``= go to your last line/position respectively
+ ='.= / =`.= goes to the line/position of the last edit

[[file:../Demos/9-marks.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/9-marks.txt"
Start by moving to "x" below and calling 'ma' on it.

 ----> x <----

This assigns the 'a' mark to that position.
Try typing 'a and `a and see what happens.

How about you assign another mark on "y" below.

 ----> y <----

Try flicking between the two marks. Edit some text,
add/remove some lines. Notice how the marks stay on x/y.

Now imagine there are far appart, and more than two.
How much better is that than scrolling!

Now make an edit somewhere and try `.
Isn't that nice :) `` / '' do something similar too.
#+END_SRC
** Search
+ =/= search forwards
+ =?= search backwards
+ =n= next result
+ =N= previous result
 \pause
+ =*= search forwards, for word under cursor
+ =#= search backwards, for word under cursor

[[file:../Demos/10-search.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/10-search.txt"
"How to exit Vim?" "How to quit Vim?" "How do you exit Vi editor?" "How to save
and quit Vim?"

These are some of the most googled questions about the Vim editor. Vim, one of
the best terminal based editors, is known for its powerful features. Its ardent
users swear by it, but it leaves new users baffled because of its "unusual
shortcuts." This even leaves them wondering how to exit from the Vim editor.

In this article, I'll show you several ways to exit Vim. We'll also see some
interesting fun facts about exiting Vim.

If you are feeling a little low because you didn't know how to quit Vim, don't,
because you are not the only one. According to Stack Overflow, over a million
developers worldwide searched for how to exit Vim.

The widespread difficulty is somewhat surprising, because if you run Vim you'll
see the information about how to exit it at the splash screen.

[source: https://itsfoss.com/how-to-exit-vim/]
#+END_SRC
** Replace
+ =:s/pattern/replacement= \\
 acts on the current *line*
+ =:%s/pattern/replacement= \\
 acts on the current *file*
+ =:'<,'>s/pattern/replacement= \\
 acts on the current *selection*
 \pause
+ You can use regex: ~\(...\)~ to match, ~\1~ to reference
 \pause
+ The general syntax is =:[range]s/{pattern}/{replacement}/[flags] [count]=
 - 3 of the flags are: ~c~ to confirm each substitution, ~g~ to replace all
 occurrences on a line, and ~i~ to ignore case

[[file:../Demos/11-replace.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/11-replace.txt"
Here are some text-replacement examples.
Try applying each substitution to the example.

1. :s/his/her/g

This is his idea, or so his imaginary friend said.

2. :%s/\(good\|nice\)/awesome/g
Linux is good. Life is nice.
Linux is good. Life is nice.

3. :%s/Article \(\d\+\)/\="Article " . submatch(1) + 1/

You see, starting the replacement with \= evaluates the content.
This can be handy to fix the double up below.

Article 1: Vi and Vim Editor: 3 Steps To Enable Thesaurus Option
Article 2: Vim Autocommand: 3 Steps to Add Custom Header To Your File
Article 2: Make Vim as Your Perl IDE Using perl-support.vim Plugin
Article 3: 5 Awesome Examples For Automatic Word Completion Using Ctrl-X
Article 4: Vi and Vim Macro Tutorial: How To Record and Play
Article 5: Tutorial: Make Vim as Your C/C++ IDE Using c.vim Plugin
Article 6: How To Add Bookmarks Inside Vim Editor
Article 7: Make Vim as Your Bash-IDE Using bash-support Plugin
Article 8: 3 Powerful Musketeers Of Vim Editor ? Macro, Mark and Map
Article 9: 8 Essential Vim Editor Navigation Fundamentals
Article 10: Vim Editor: How to Correct Spelling Mistakes Automatically
Article 11: Transfer the Power of Vim Editor to Thunderbird for Email
Article 12: Convert Vim Editor to Beautiful Source Code Browser
#+END_SRC
** Registers
+ Like marks, just for your text.
+ You can basically save text to a named spot.
+ ="a= to ="z= *save* the selected text set a register.
+ ="A= to ="Z= *add* the selection to the register
 \pause
+ You need to add an action, e.g.
 - ="ay= yanks (copies) an /active selection/ to register =a=
 - ="ayvap= yanks (copies) the /current paragraph/ to register =a=
 - ="ap= pastes the content of register =a=
 - ="Ayiw= adds the /current word/ to register =a=

[[file:../Demos/12-registers.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/12-registers.txt"
Say there's some content that keeps on coming up.
This is the perfect situation for registers.

For example, let's say you keep on using:
"the individual in question"
You could copy that to a register i by "iyi"
(copy to register i the content inside " quotes).
Let's do the same with "neither confirm nor deny"
using register n.

Then you could use "ip and "in to fill in the blanks in the following:

% can % allegations that they stopped paying attention during the lecture.
Despite the % claiming that they were facinated by the content, other students
could % whether they actually awake during the lecture.
For % this is a rather bad sign.
We contacted the lecturer for comment, and they could %
whether they actually cared.
#+END_SRC
** Macros (mini)
#+begin_center
=.= repeats the last action \\
[[file:../Demos/13-dot-macro.txt][Demo]]
#+end_center

#+BEGIN_SRC text :tangle "../Demos/13-dot-macro.txt"
Great for repeating the same action a bunch.

For example, remove the five repeated words in the following lines:

1. There's a a a a a repeated word here.
2. Someone is doing doing doing doing doing funny things.
3. What's with this repetition repetition repetition repetition repetition?
4. Don't tell me you you you you you have done it again!?
#+END_SRC
** Recording a named macro
+ =qa= starts recording a macro saved to =a=
+ /do the things^{TM}/
+ =q= to stop recording
** Using a named macro
+ =@a= to execute macro =a=
+ =@@= to execute the last macro
+ =22@a= to execute =a= 22 times...
** Editing an existing macro
+ You can just use the register functionality
+ ="ap= pastes the content of macro =a=
+ Edit, select new macro content
+ ="ay= writes to the macro =a=
** A named macro --- example

#+BEGIN_EXAMPLE
qs $ S) Ret "ayib dab x ^ "aP a : Spc Esc ^ <down> q
#+END_EXAMPLE
\pause
\vspace{-2mm}
*** What does that do!?
\vspace{-2mm}
 - =$= go to end of line
 - =S)= search backwards for =)=
 - =Ret= go to the first match
 - ="ayib= copy the content of the parenthesis to register =a=
 - =dab= delete the parenthesised content
 - =x= delete the current character
 - =^= go to the start of the content
 - ="aP= paste content of register =a=
 - =a : Spc Esc= enter insert mode after the content, and add ": " before
 returning to normal mode
 - =^= go to the start of the content
 - =<down>= move the cursor down one line
** A named macro --- example explained
Ok, what does that /really/ do?

+ Find the last parenthesised content in a line, take it out and bring it to the front

If one called it on the following line for example
#+BEGIN_EXAMPLE
I need to make some slides (Due Thursday) on vim
#+END_EXAMPLE
becomes
#+BEGIN_EXAMPLE
Due Thursday: I need to make some slides on vim
#+END_EXAMPLE

[[file:../Demos/14-named-macro.txt][Demo]]
#+BEGIN_SRC text :tangle "../Demos/14-named-macro.txt"
The macro is (slightly tweaked from the example):
ma$S("ayibdabx`a"aPa: �

We can copy that to 's' by selecting it and calling "sy.
We can then run the macro by @s

Try giving it a shot on the following lines
 - I need to make some slides (Due Thursday) on vim
 - I need to make some bread (Before Friday) with my dough
 - I should prepeare some slides for my next talk (Next Thursday)
 - (By Thursday) I'll need some good exampled to captivate my audience
 - I also want to entice the audience (During my talks) to give the next one a shot
#+END_SRC

** This seems like a lot of work
It is, but it's easy to gradually build your skill. We spend so much time
editing text that I think it's worth using a method which improves the
experience, even if it takes a bit of time to learn.

#+ATTR_LATEX: :width 0.5\linewidth
[[xkcd:1205]]
** Resources
+ A nice big [[https://vim.rtorr.com/][Vim Cheat Sheet]]
+ [[https://www.glump.net/_media/howto/desktop/vim-graphical-cheat-sheet-and-tutorial/vi-vim-cheat-sheet-and-tutorial.pdf][Vim functions overlayed on a keyboard]]
+ Interactive Vim tutorial: https://www.openvim.com/
+ Vim navigation in Firefox: [[https://github.com/tridactyl/tridactyl][tridactyl]] ([[https://addons.mozilla.org/en-us/firefox/addon/tridactyl-vim/][add-on page]])
+ Vim navigation in Chrome: https://vimium.github.io/
+ Blog post: [[https://yehudakatz.com/2010/07/29/everyone-who-tried-to-convince-me-to-use-vim-was-wrong/][Everyone Who Tried to Convince Me to use Vim was Wrong]]
+ ~vimtutor~ is a little tool that comes bundled with vim

* Q&A

% Created 2020-06-23 Tue 22:51
% Intended LaTeX compiler: pdflatex
\documentclass[presentation]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage{microtype}
\usepackage{booktabs}
\usepackage[scale=0.9]{sourcecodepro}
\usepackage{pmboxdraw}
\usepackage[main]{embedall}
\embedfile{"Modal Editing".org}

 \usepackage{minted}
 \usepackage[many]{tcolorbox}
 \setminted{
 frame=none,
 % framesep=2mm,
 baselinestretch=1.2,
 fontsize=\footnotesize,
 highlightcolor=white!95!black!80!blue,
 linenos,
 breakanywhere=true,
 breakautoindent=true,
 breaklines=true,
 tabsize=4,
 xleftmargin=3.5em,
 autogobble=true,
 obeytabs=true,
 python3=true,
 % texcomments=true,
 framesep=2mm,
 breakbefore=\\.+,
 breakafter=\,
 style=autumn,
 breaksymbol=\color{page!60!text}\tiny\ensuremath{\hookrightarrow},
 breakanywheresymbolpre=\,\footnotesize\ensuremath{_{\color{page!60!text}\rfloor}},
 breakbeforesymbolpre=\,\footnotesize\ensuremath{_{\color{page!60!text}\rfloor}},
 breakaftersymbolpre=\,\footnotesize\ensuremath{_{\color{page!60!text}\rfloor}},
 }

 \BeforeBeginEnvironment{minted}{
 \begin{tcolorbox}[
 enhanced,
 overlay={\fill[white!90!black] (frame.south west) rectangle ([xshift=2.8em]frame.north west);},
 colback=white!95!black,
 colframe=white!95!black, % make frame colour same as background
 breakable,% Allow white breaks
 arc=0pt,outer arc=0pt,sharp corners, % sharp corners
 boxsep=0pt,left=0pt,right=0pt,top=0pt,bottom=0pt % no margin/paddding
]
 }
 \AfterEndEnvironment{minted}{\end{tcolorbox}}
 \renewcommand\theFancyVerbLine{\color{black!60!white}\arabic{FancyVerbLine}} % minted line numbering
\usetheme[progressbar=foot]{metropolis}
\author{Timothy}
\date{2020-06-25}
\title{Modal Editing}
\subtitle{One mode just isn't enough}
\let\textsc\MakeUppercase
\definecolor{verbatim}{HTML}{50a14f}
\makeatletter \def\verbatim@font{\color{verbatim}\normalfont\ttfamily} \makeatother

\colorlet{greenyblue}{blue!70!green}
\colorlet{blueygreen}{blue!40!green}
\providecolor{link}{named}{greenyblue}
\providecolor{cite}{named}{blueygreen}
\hypersetup{
 pdfauthor={Timothy},
 pdftitle={Modal Editing},
 pdfkeywords={},
 pdfsubject={},
 pdfcreator={Emacs 26.3 (Org mode 9.4)},
 pdflang={English},
 breaklinks=true,
 colorlinks=true,
 linkcolor=,
 urlcolor=link,
 citecolor=cite
}
\urlstyle{same}
\begin{document}

\maketitle

\section{'Normal' editing}
\label{sec:normal-editing}
\begin{frame}[label={sec:standard-keybindings},fragile]{Standard keybindings}
 You'll likely be used to some common shortcuts
\begin{center}
\begin{tabular}{ll}
\toprule
Shortcut & Action\\
\midrule
\verb~Ctrl + a~ & Select all\\
\verb~Ctrl + f~ & Find\\
\verb~Ctrl + c~ & Copy\\
\verb~Ctrl + v~ & Paste\\
\verb~Ctrl + o~ & Open\\
\verb~Ctrl + s~ & Save\\
\ldots{} & \\
\bottomrule
\end{tabular}
\end{center}
\end{frame}
\begin{frame}[label={sec:application-specific-keybindings},fragile]{Application-specific keybindings}
 \begin{block}{Word}
\begin{center}
\begin{tabular}{ll}
\toprule
Shortcut & Action\\
\midrule
\verb~Ctrl + Shift + <right>~ & Select word to the right\\
\verb~Ctrl + Alt + z~ & Cycle through previous (4) changes\\
\bottomrule
\end{tabular}
\end{center}
\end{block}
\begin{block}{\textls*[70]{\textsc{vs}} Code}
\begin{center}
\begin{tabular}{ll}
\toprule
Shortcut & Action\\
\midrule
\verb~Ctrl + r~ & Open recent\\
\verb~Alt + Shift + a~ & Block comment\\
\verb~Ctrl + Alt + Shift + c~ & Copy relative path of file\\
\verb~Ctrl + K, Ctrl + Alt + s~ & Git, stage selected region\\
\bottomrule
\end{tabular}
\end{center}
\end{block}
\end{frame}
\section{The problem with normal editing}
\label{sec:-problem-with}
\begin{frame}[label={sec:problem-with-normal}]{The problem with normal editing}
Shortcut overloading.
\end{frame}
\begin{frame}[label={sec:mathematical-shortcut-limit},fragile]{Mathematical shortcut limit}
 \begin{itemize}
\item 26 letters + 10 numbers + 12 (not-on-number) symbol keys + 12 function keys
\item \verb~Ctrl~, \verb~Alt~, \verb~Shift~ modifiers, 4 possible combinations
\item How many possible shortcuts? \pause
\end{itemize}
\[
 4 \times (26+10+12) + 3 \times 12 = 228
\]

That's \ldots{} a lot? \pause Actually, once you consider all the different categories of
things, it's not that many --- hence clunky shortcuts like \verb~Ctrl + Alt + Shift + c~.
\end{frame}
\begin{frame}[label={sec:solution-add-prefix},fragile]{Solution? Add a prefix key (\textls*[70]{\textsc{vs}} Code style)}
 \begin{itemize}
\item \textls*[70]{\textsc{vs}} Code reserves \verb~Ctrl + K~ to be used as a prefix for a second shortcut
\item This increases the number of shortcuts to
\verb~452~
\item More flexibility is good! \pause \ldots{}but it's also even more clunky :(
\item \verb~Ctrl + K, Ctrl + Alt + s~
\end{itemize}
\end{frame}
\begin{frame}[label={sec:solution-modal-editing}]{Solution! Modal editing}
\begin{center}
\includegraphics[height=0.7\linewidth]{lord-saviour-vim.jpg}
\end{center}
\end{frame}
\section{Modal Editing}
\label{sec:modal-editing}
\begin{frame}[label={sec:observation-there-are},fragile]{Observation: There are \emph{way} more keys than modifiers}
 \begin{itemize}
\item 3 modifier keys (\verb~Ctrl~, \verb~Alt~, \verb~Shift~)
\item 48 \textls*[70]{\textsc{ascii}} character keys
\item If only there was some way we could use them\ldots{}
\end{itemize}
\pause
\emph{Think of how much time you spend editing}
\end{frame}
\begin{frame}[label={sec:use-them-keys}]{Use them keys}
\begin{itemize}
\item Turn 'normal' typing text into a special case
\item The opens up the possibility to use every single key for an action
\end{itemize}
\end{frame}
\begin{frame}[label={sec:modal-editing-use},fragile]{Use them keys --- how?}
 \begin{itemize}
\item Define different \alert{modes}
\item Start off in a default mode
\item From the default mode, move to other modes using any key
\item Leave a mode with \verb~Esc~
\item This opens up \emph{every single key} for use in actions
\end{itemize}
\end{frame}
\begin{frame}[label={sec:-modal-editing},fragile]{Use them keys --- an example}
 \begin{itemize}
\item Let's call the default mode \alert{normal}
\item Let's call the you-see-what-you-type behaviour (that you're used to) \alert{insert} mode
\item Type \verb~i~ to enter \alert{insert} mode, type like you're in any other app
\item Press \verb~Esc~ and you go back to \alert{normal} mode
\end{itemize}
\end{frame}
\begin{frame}[label={sec:mathematical-advantage}]{The mathematical advantage}
\begin{itemize}
\item Use up to three keys in a row
\item Each key can be any letter, number, symbol + usual modifiers
\item \((26 + 10 + 12) \times 4 = 192\) options
\item How many possible keybindings can we use now? \pause
\end{itemize}
\[
 192^3 = 7\,077\,888
\]

This is a \emph{huge} increase from the 192 possibilities 'normally', in fact this is a
factor of 36-thousand more!
\end{frame}
\begin{frame}[label={sec:mnemonic-advantage},fragile]{The mnemonic advantage}
 You are no longer forced to use weird keybindings.

With so many options, one can design mnemonic categories of keybindings. E.g.
put actions to do with deletion under \verb~d~, etc.
\end{frame}
\begin{frame}[label={sec:ergonomic-advantage}]{The ergonomic advantage}
I no longer feel like I have to be part-human, part-spider to use uncommon shortcuts.
\end{frame}
\begin{frame}[label={sec:capability-curve}]{The capability curve}
\begin{center}
\includegraphics[width=0.7\linewidth]{learning-curve.pdf}
\end{center}
Phases:
\vspace{-3mm}
\begin{enumerate}
\item \textls*[70]{\textsc{wtf}}?
\item Clunky
\item Eh, it's alright
\item I like this
\item \textls*[70]{\textsc{omg}}!
\end{enumerate}
\end{frame}
\section{Vim}
\label{sec:vim}
\begin{frame}[label={sec:what-it}]{What is it?}
\begin{itemize}
\item An old text editor
\item An old \alert{modal} text editor
\item Despite being \raisebox{0.5ex}{\texttildelow}30 years old,
people still use it \pause
\item Clearly it did something right (modal editing)
\end{itemize}
\end{frame}
\begin{frame}[label={sec:quick-history},fragile]{A quick history}
 \begin{itemize}
\item Rewrite of the \texttt{vi} editor (which Bill Joy created in 1976)
\item Motivation for creation:
\begin{itemize}
\item George Coulouris worked at \textls*[70]{\textsc{at}}\&T
\item The 'default' editor at the time was nasty and clunky
\item George had an idea for a better way (\texttt{em})
\item Bill Joy is impressed, re-implements favourite ideas (\texttt{vi})
\end{itemize}
\item The hardware back then looked a bit different
\end{itemize}
\begin{center}
\includegraphics[height=0.2\linewidth]{adm-3a terminal keyboard.png}
\end{center}

\alert{There is no mouse and you cannot click!}
\end{frame}

\begin{frame}[label={sec:main-vim-modes}]{The (main) vim modes}
\begin{itemize}
\item \alert{Normal} mode --- the \ldots{} normal mode (default)
\item \alert{Insert} mode --- type text normally
\item \alert{Visual} Mode --- select text
\end{itemize}
\end{frame}
\begin{frame}[label={sec:simple-diagram}]{A simple diagram}
\begin{center}
\includegraphics[width=.9\linewidth]{simple-mode-flow.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:modal-madness}]{Modal madness}
\begin{center}
\includegraphics[width=\linewidth]{vimModeStateDiagram.pdf}
\end{center}
\end{frame}
\section{Let's learn Vim}
\label{sec:lets-learn-vim}
\begin{frame}[label={sec:basics},fragile]{The Basics}
 Vim is the name of the terminal command, \texttt{vim}.
Please don't be scared of terminals, they're really quite simple.
To open \texttt{file.txt} in vim, just run \texttt{vim file.txt}. \pause

From there you can edit text just knowing this
\begin{itemize}
\item Press \verb~i~ to enter \alert{insert} mode, and type some text
\item Press \verb~Esc~ to stop writing text (go to \alert{normal} mode)
\item Type \verb~:wq~ to save your file and exit.
\end{itemize}
\end{frame}
\begin{frame}[label={sec:basics-exiting-vim},fragile]{The Basics --- exiting Vim}
 \begin{center}
\includegraphics[width=.9\linewidth]{cant-exit-vim-tweet-alpha.png}
\end{center}
\begin{itemize}
\item Type \verb~:wq~ to save your file and \alert{exit}.
\end{itemize}
\end{frame}
\begin{frame}[label={sec:little-bit-more},fragile]{A little bit more}
 For going through your edits
\begin{itemize}
\item \verb~u~ undoes the last change
\item \verb~Ctrl + r~ re-does the last change
\end{itemize}

For making and using text selections
\begin{itemize}
\item \verb~v~ to start a selection
\item \verb~y~ to yank (copy) the text to the clipboard
\item \verb~p~ to paste
\item \verb~d~ to delete
\end{itemize}

\href{../Demos/1-basics.txt}{Demo}
\end{frame}
\section{More Vim}
\label{sec:more-vim}
\begin{frame}[label={sec:aside-shortened-shortcut},fragile]{Aside --- shortened shortcut notation}
 \begin{itemize}
\item We can do better than typing \verb~Ctrl + a~, or \verb~Shift + i~ each time.
\item So, we perform the following contractions
\begin{itemize}
\item \verb~Shift + a~ becomes \verb~A~
\item \verb~Control + a~ becomes \verb~C-a~
\item \verb~Alt + a~ becomes \verb~M-a~\footnote{\verb~M~ not \verb~A~ because \verb~Alt~ used to be called \verb~Meta~}
\item \verb~Control + Alt + Shift + a~ becomes \verb~C-M-A~ \\
\emph{isn't that easier?}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:insert-mode},fragile]{Insert Mode}
 \begin{itemize}
\item Enter using one of \verb~i I a A o O gi~
\begin{itemize}
\item \verb~i~ insert at point
\item \verb~I~ insert at start of line
\item \verb~a~ insert after point
\item \verb~A~ insert at end of line
\item \verb~o~ insert on new line above
\item \verb~O~ insert on new line below
\item \verb~gi~ insert at last edit
\pause
\end{itemize}
\item \verb~C-w~ to delete the last word
\item \verb~C-u~ to delete the last line (this is the same as \verb~dd~ in normal mode)
\end{itemize}

\emph{Think about the mnemonics in your head.}

\href{../Demos/2-insert.txt}{Demo}
\end{frame}
\begin{frame}[label={sec:visual-mode},fragile]{Visual mode}
 \begin{itemize}
\item Make a selection using on of \verb~v V C-v gv~
\begin{itemize}
\item \verb~v~ visual \alert{character} mode
\item \verb~V~ visual \alert{line} mode
\item \verb~C-v~ visual \alert{block} mode (rectangle)
\item \verb~gv~ last visual selection
\pause
\end{itemize}
\item \verb~o~ switch between start/end of selection
\item grow/shrink selection with normal cursor movement
\end{itemize}

\href{../Demos/3-visual.txt}{Demo}
\end{frame}
\begin{frame}[label={sec:quick-actions},fragile]{'Quick' actions}
 \begin{itemize}
\item Some action don't need a selection to act on
\item If you press the key twice, they'll simply act on the current line
\pause
\item This works for
\begin{itemize}
\item \verb~dd~ delete line
\item \verb~yy~ yank (copy) line
\item \verb~cc~ change line
\item \verb~==~ re-indent line
\item \verb~>>~ shift line right
\item \verb~<<~ shift line left
\pause
\end{itemize}
\item You can also use \verb~x~ to delete the character under the cursor, or the active
selection, and \verb~r~ to replace the character.
\end{itemize}
\end{frame}
\begin{frame}[label={sec:actions-selection},fragile]{Actions on a selection}
 \begin{itemize}
\item \verb~d~ delete
\item \verb~c~ change content (delete and enter insert mode)
\item \verb~y~ (yank) copy selection to clipboard
\pause
\item \verb,~, swap case
\item \verb~u~ make lowercase
\item \verb~U~ make uppercase
\end{itemize}

\href{../Demos/4-simple-actions.txt}{Demo}
\end{frame}
\begin{frame}[label={sec:-more-actions},fragile]{\emph{More} actions on a selection}
 \begin{itemize}
\item \verb~!~ run selection though an external program
\item \verb~=~ re-indent
\item \verb~>~ shift right
\item \verb~<~ shift left
\end{itemize}

\href{../Demos/5-simple-code-actions.py}{Demo}
\end{frame}
\begin{frame}[label={sec:text-objects},fragile]{Text objects}
 \begin{itemize}
\item Used while in visual mode, or after an action (e.g. \verb~d~ for delete)
\item Performed from the current cursor
\item Can be prefixed with \verb~i~ or \verb~a~
\begin{itemize}
\item \verb~i~ selects the 'inner' object
\item \verb~a~ selects the 'outer' object
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:text-objects-list},fragile]{Text objects --- a list}
 \begin{itemize}
\item \verb~w~ word
\item \verb~p~ paragraph
\item \verb~b~ brackets, or \verb~()~ , \verb~[]~, \verb~{}~, \verb~<>~ if you want to be specific
\item \verb~'~ or \verb~"~ for quoted text
\end{itemize}
\end{frame}
\begin{frame}[label={sec:text-objects-an},fragile]{Text objects --- an example}
 \begin{verbatim}
 as
 ┌───────────────────────────┐
 Here is some text. Isn't that nice (yes it is).
 └────┘ └──┘ └───┘ └─────────┘
 w iw aw ab

 is
 ┌───────────────────────────────────┐
 ┌Often one likes to "manipulate" text. Applications
ip├often make text easy to write, clunky to edit.
ap└

 That's why modal editing is nice.
\end{verbatim}

\href{../Demos/6-simple-objects.txt}{Demo}
\end{frame}
\begin{frame}[label={sec:movements},fragile]{Movements}
 Has the same effect as arrow keys, \verb~Home~, and \verb~End~.

Used for moving the current cursor, and shrinking/growing a selection.
\end{frame}
\begin{frame}[label={sec:movements-overview}]{Movements --- overview}
\begin{center}
\includegraphics[width=1\linewidth]{vim-movements.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:movements-put-another},fragile]{Movements --- put another way}
 \begin{block}{Micro}
\vspace{-4mm}
\begin{center}
\begin{tabular}{lllll}
\toprule
target & forwards & forward upto & backwards & back upto\\
\midrule
word & \verb~w~ & \verb~e~ & \verb~b~ & \verb~ge~\\
\emph{x} & \verb~f~ \emph{x} & \verb~t~ \emph{x} & \verb~F~ \emph{x} & \verb~T~ \emph{x}\\
\bottomrule
\end{tabular}
\end{center}
\vspace{-4mm}
\end{block}
\begin{block}{Macro}
\vspace{-4mm}
\begin{center}
\begin{tabular}{lll}
\toprule
target & start & end\\
\midrule
line & \verb~0~ & \\
line content & \verb~^~ & \verb~$~\\
sentence & \verb~(~ & \verb~)~\\
paragraph & \verb~{~ & \verb~}~\\
document & \verb~gg~ & \verb~G~\\
page & \verb~C-b~ & \verb~C-f~\\
\bottomrule
\end{tabular}
\end{center}
\end{block}
\end{frame}
\begin{frame}[label={sec:movements-an-example},fragile]{Movements --- an example}
 \begin{verbatim}
gg
{ w fc tl $
↓ ↓ ↓ ↓ ↓
Pretend there is a cursor at the start of this line,
then look around at the various movements.
 ↑
0 ^ Tc Fd) }
↓ ↓ ↓ ↓ ↓
 Pretend the cursor is at the end of this now.
 ↑
 G
\end{verbatim}

\href{../Demos/7-movements-prose.txt}{Demo (Prose)}
\qquad
\href{../Demos/8-movements-objects-code.py}{Demo (Code)}
\end{frame}
\begin{frame}[label={sec:count-prefix},fragile]{Count prefix}
 Want to do something multiple times, for example not just delete the next word (\verb~dw~),
but the next three words?

It's easy! Just type the number of times you want to do it \emph{before} or \emph{during} the action.

In this example, 3-delete-word (\verb~3dw~) or delete-3-words (\verb~d3w~) does the trick.

This works for everything though, not just words :)
\end{frame}
\begin{frame}[label={sec:structure-vim-operation}]{Structure of a vim operation}
\begin{center}
\includegraphics[width=1\linewidth]{vim-command-structure.pdf}
\end{center}
\end{frame}
\begin{frame}[label={sec:command-mode},fragile]{Command mode}
 \begin{itemize}
\item A way to tell vim to do non-text-editing stuff
\item Enter command mode with \verb~:~
\item This is how you:
\begin{itemize}
\item \verb~:w~ write a file
\item \verb~:q~ quit vim
\item \verb~:wq~ write a file, and quit
\item and more
\end{itemize}
\end{itemize}
\end{frame}
\section{Even more Vim}
\label{sec:-even-more}
\begin{frame}[label={sec:oh-yes-theres}]{Oh yes, there's more}
You've just seen how to perform 'basic' operations in vim.

Don't worry, while it may look intimidating, if you try this out you'll find
yourself picking it up quickly --- the mnemonic-ness helps a lot.

Vim does a bit more though, so we'll go over that for fun (and profit).
\end{frame}
\begin{frame}[label={sec:marks-saving},fragile]{Marks --- saving}
 \begin{itemize}
\item A way to save a position
\item Save the current location with \verb~m?~ where \verb~?~ is a letter (a-z) which serves as a
unique identifier
\begin{itemize}
\item Lower case letters are local to the file
\item Upper case letters work globally
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:marks-accessing},fragile]{Marks --- accessing}
 \begin{itemize}
\item \verb~'a~ goes to the \alert{line} of mark \verb~a~
\item \verb~`a~ goes to the \alert{position} of \verb~a~
\item \verb~''~ and \verb~``~ go to your last line/position respectively
\item \verb~'.~ / \verb~`.~ goes to the line/position of the last edit
\end{itemize}

\href{../Demos/9-marks.txt}{Demo}
\end{frame}
\begin{frame}[label={sec:search},fragile]{Search}
 \begin{itemize}
\item \verb~/~ search forwards
\item \verb~?~ search backwards
\item \verb~n~ next result
\item \verb~N~ previous result
\pause
\item \verb~*~ search forwards, for word under cursor
\item \verb~#~ search backwards, for word under cursor
\end{itemize}

\href{../Demos/10-search.txt}{Demo}
\end{frame}
\begin{frame}[label={sec:replace},fragile]{Replace}
 \begin{itemize}
\item \verb~:s/pattern/replacement~ \\
acts on the current \alert{line}
\item \verb~:%s/pattern/replacement~ \\
acts on the current \alert{file}
\item \verb~:'<,'>s/pattern/replacement~ \\
acts on the current \alert{selection}
\pause
\item You can use regex: \texttt{\textbackslash{}(...\textbackslash{})} to match, \texttt{\textbackslash{}1} to reference
\pause
\item The general syntax is \verb~:[range]s/{pattern}/{replacement}/[flags] [count]~
\begin{itemize}
\item 3 of the flags are: \texttt{c} to confirm each substitution, \texttt{g} to replace all
occurrences on a line, and \texttt{i} to ignore case
\end{itemize}
\end{itemize}

\href{../Demos/11-replace.txt}{Demo}
\end{frame}
\begin{frame}[label={sec:registers},fragile]{Registers}
 \begin{itemize}
\item Like marks, just for your text.
\item You can basically save text to a named spot.
\item \verb~"a~ to \verb~"z~ \alert{save} the selected text set a register.
\item \verb~"A~ to \verb~"Z~ \alert{add} the selection to the register
\pause
\item You need to add an action, e.g.
\begin{itemize}
\item \verb~"ay~ yanks (copies) an \emph{active selection} to register \verb~a~
\item \verb~"ayvap~ yanks (copies) the \emph{current paragraph} to register \verb~a~
\item \verb~"ap~ pastes the content of register \verb~a~
\item \verb~"Ayiw~ adds the \emph{current word} to register \verb~a~
\end{itemize}
\end{itemize}

\href{../Demos/12-registers.txt}{Demo}
\end{frame}
\begin{frame}[label={sec:macros-mini},fragile]{Macros (mini)}
 \begin{center}
\verb~.~ repeats the last action \\
\href{../Demos/13-dot-macro.txt}{Demo}
\end{center}
\end{frame}

\begin{frame}[label={sec:recording-named-macro},fragile]{Recording a named macro}
 \begin{itemize}
\item \verb~qa~ starts recording a macro saved to \verb~a~
\item \emph{do the things\textsuperscript{\textls*[70]{\textsc{tm}}}}
\item \verb~q~ to stop recording
\end{itemize}
\end{frame}
\begin{frame}[label={sec:using-named-macro},fragile]{Using a named macro}
 \begin{itemize}
\item \verb~@a~ to execute macro \verb~a~
\item \verb~@@~ to execute the last macro
\item \verb~22@a~ to execute \verb~a~ 22 times\ldots{}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:editing-an-existing},fragile]{Editing an existing macro}
 \begin{itemize}
\item You can just use the register functionality
\item \verb~"ap~ pastes the content of macro \verb~a~
\item Edit, select new macro content
\item \verb~"ay~ writes to the macro \verb~a~
\end{itemize}
\end{frame}
\begin{frame}[label={sec:named-macro-example},fragile]{A named macro --- example}
 \begin{verbatim}
qs $ S) Ret "ayib dab x ^ "aP a : Spc Esc ^ <down> q
\end{verbatim}
\pause
\vspace{-2mm}
\begin{block}{What does that do!?}
\vspace{-2mm}
\begin{itemize}
\item \verb~$~ go to end of line
\item \verb~S)~ search backwards for \verb~)~
\item \verb~Ret~ go to the first match
\item \verb~"ayib~ copy the content of the parenthesis to register \verb~a~
\item \verb~dab~ delete the parenthesised content
\item \verb~x~ delete the current character
\item \verb~^~ go to the start of the content
\item \verb~"aP~ paste content of register \verb~a~
\item \verb~a : Spc Esc~ enter insert mode after the content, and add ``: '' before
returning to normal mode
\item \verb~^~ go to the start of the content
\item \verb~<down>~ move the cursor down one line
\end{itemize}
\end{block}
\end{frame}
\begin{frame}[label={sec:even-more-vim},fragile]{A named macro --- example explained}
 Ok, what does that \emph{really} do?

\begin{itemize}
\item Find the last parenthesised content in a line, take it out and bring it to the front
\end{itemize}

If one called it on the following line for example
\begin{verbatim}
I need to make some slides (Due Thursday) on vim
\end{verbatim}
becomes
\begin{verbatim}
Due Thursday: I need to make some slides on vim
\end{verbatim}

\href{../Demos/14-named-macro.txt}{Demo}
\end{frame}
\begin{frame}[label={sec:this-seems-like}]{This seems like a lot of work}
It is, but it's easy to gradually build your skill. We spend so much time
editing text that I think it's worth using a method which improves the
experience, even if it takes a bit of time to learn.

\begin{figure}[!htb]
 \centering
 \includegraphics[scale=0.4]{/home/tec/.emacs.d/xkcd/1205.png}
 \caption*{\label{xkcd:1205} \textbf{Is It Worth the Time?} Don't forget the time you spend finding the chart to look up what you save. And the time spent reading this reminder about the time spent. And the time trying to figure out if either of those actually make sense. Remember, every second counts toward your life total, including these right now.}
\end{figure}
\end{frame}
\begin{frame}[label={sec:resources},fragile]{Resources}
 \begin{itemize}
\item A nice big \href{https://vim.rtorr.com/}{Vim Cheat Sheet}
\item \href{https://www.glump.net/_media/howto/desktop/vim-graphical-cheat-sheet-and-tutorial/vi-vim-cheat-sheet-and-tutorial.pdf}{Vim functions overlayed on a keyboard}
\item Interactive Vim tutorial: \url{https://www.openvim.com/}
\item Vim navigation in Firefox: \href{https://github.com/tridactyl/tridactyl}{tridactyl} (\href{https://addons.mozilla.org/en-us/firefox/addon/tridactyl-vim/}{add-on page})
\item Vim navigation in Chrome: \url{https://vimium.github.io/}
\item Blog post: \href{https://yehudakatz.com/2010/07/29/everyone-who-tried-to-convince-me-to-use-vim-was-wrong/}{Everyone Who Tried to Convince Me to use Vim was Wrong}
\item \texttt{vimtutor} is a little tool that comes bundled with vim
\end{itemize}
\end{frame}

\section{Q\&A}
\label{sec:qa}
\end{document}

