
Modal Editing
One mode just isn’t enough

Timothy

2020-06-25

1 ’Normal’ editing

1.1 Standard keybindings

You’ll likely be used to some common shortcuts

Shortcut Action

Ctrl + a Select all

Ctrl + f Find

Ctrl + c Copy

Ctrl + v Paste

Ctrl + o Open

Ctrl + s Save

. . .

1.2 Application-specific keybindings

1.2.1 Word

Shortcut Action

Ctrl + Shift + <right> Select word to the right

Ctrl + Alt + z Cycle through previous (4) changes

1

1.2.2 vs Code

Shortcut Action

Ctrl + r Open recent

Alt + Shift + a Block comment

Ctrl + Alt + Shift + c Copy relative path of file

Ctrl + K, Ctrl + Alt + s Git, stage selected region

2 The problem with normal editing

2.1 The problem with normal editing

Shortcut overloading.

2.2 Mathematical shortcut limit

• 26 letters + 10 numbers + 12 (not-on-number) symbol keys + 12 function keys

• Ctrl, Alt, Shift modifiers, 4 possible combinations

• How many possible shortcuts?

4 × (26 + 10 + 12) + 3 × 12 = 228

That’s . . . a lot? Actually, once you consider all the different categories of things, it’s not

that many — hence clunky shortcuts like Ctrl + Alt + Shift + c.

2.3 Solution? Add a prefix key (vs Code style)

• vs Code reserves Ctrl + K to be used as a prefix for a second shortcut

• This increases the number of shortcuts to 452

• More flexibility is good! . . . but it’s also even more clunky :(

• Ctrl + K, Ctrl + Alt + s

2

2.4 Solution! Modal editing

3 Modal Editing

3.1 Observation: There are way more keys than modifiers

• 3 modifier keys (Ctrl, Alt, Shift)

• 48 ascii character keys

• If only there was some way we could use them. . .

Think of how much time you spend editing

3

3.2 Use them keys

• Turn ’normal’ typing text into a special case

• The opens up the possibility to use every single key for an action

3.3 Use them keys — how?

• Define differentmodes

• Start off in a default mode

• From the default mode, move to other modes using any key

• Leave a mode with Esc

• This opens up every single key for use in actions

3.4 Use them keys — an example

• Let’s call the default mode normal

• Let’s call the you-see-what-you-type behaviour (that you’re used to) insert mode

• Type i to enter insert mode, type like you’re in any other app

• Press Esc and you go back to normalmode

3.5 The mathematical advantage

• Use up to three keys in a row

• Each key can be any letter, number, symbol + usual modifiers

• (26 + 10 + 12) × 4 = 192 options

• How many possible keybindings can we use now?

4

192
3 = 7 077 888

This is a huge increase from the 192 possibilities ’normally’, in fact this is a factor of

36-thousand more!

3.6 The mnemonic advantage

You are no longer forced to use weird keybindings.

With so many options, one can design mnemonic categories of keybindings. E.g. put

actions to do with deletion under d, etc.

3.7 The ergonomic advantage

I no longer feel like I have to be part-human, part-spider to use uncommon shortcuts.

3.8 The capability curve

Normal Text Editor
Modal Text Editor

Phases:

1. wtf?

2. Clunky

3. Eh, it’s alright

5

4. I like this

5. omg!

4 Vim

4.1 What is it?

• An old text editor

• An oldmodal text editor

• Despite being
~
30 years old, people still use it

• Clearly it did something right (modal editing)

4.2 The (main) vim modes

• Normal mode — the . . . normal mode (default)

• Insert mode — type text normally

• Visual Mode — select text

4.3 A simple diagram

Normal Mode

Insert Mode Visual Mode

Es
c

i
I
a
A
o
O

 V
 v

Es
c

c r R g :
Others

6

4.4 Modal madness

Ctrl-X Mode

Ctrl-X (Insert Completion) Mode

Return to
Insert or Replace Mode

Enter from
Insert or Replace Mode

Ctrl-X

After leaving Completion Mode

Enter Special Character State Diagram

Special Character Pending

up to 4
hex digits

[0-9a-fA-F]{0,4}

up to 8
hex digits

[0-9a-fA-F]{0,8}

up to 4
hex digits

[0-9a-fA-F]{0,4}

up to 3
octal digits
[0-7]{0,3}

Special Character
Except: [0-9XoOxXuU]

UuXxOo

up to 3
decimal digits

[0-9]{0,3}

Return to
Insert, Replace, or Virtual Replace Mode

or Normal Mode if coming from one of the Replace Character Pending Modes

Ctrl-V Ctrl-Q

Enter from
Insert, Replace, Virtual Replace Mode
or one of the Replace Character Pending Modes

C
tr

l-X
 M

od
e

C
tr

l-X
 M

od
e

S
pe

ci
al

 C
ha

ra
ct

er

S
pe

ci
al

 C
ha

ra
ct

er

S
pe

ci
al

 C
ha

ra
ct

er

Replace Character Pending Modes

Replace Character
Pending

Virtual Replace
Character Pending

S
pe

ci
al

 C
ha

ra
ct

er
Visual Modes

Visual

Visual Line

Visual Block

Ctrl-V

Vv

Ctrl-V

v

V

Replace Modes

Replace

Virtual
Replace

Select Modes

Select BlockSelect LineSelect

Insert Visual Modes

Insert Visual Line

Insert Visual Block

Insert Visual

Insert Select Modes

Insert Select Line

Insert Select Block

Insert Select

Operator Pending

Note(s)

Esc Ctrl-[

i I o Oa A

Ctrl-C

gR

:vi

Ctrl-GCtrl-G

Ctrl-O

:!/: ? Ctrl-VVv

Insert

Insert

:start

:

Ctrl-O

Q R

c

C

Normal Mode
Command Insert

Normal

Command-Line
(Cmdline)

Ex

Insert

Normal (Command)

Normal (Command)

Esc

Esc

Esc

!

gI

Esc

s S

Visual Mode
Command

Select Visual

g Ctrl-HgHgh

Printable Character, NL, or CR

Esc

Esc

Esc

Ctrl-V

V

v

g Ctrl-H

gH

gh

Ctrl-GCtrl-G

Esc

Esc

Visual Mode
Command

Select Mode
Command

operator

CR

I

A

VIM Modes Transition Diagram By darcyparker@gmail.com Draft (3/19/2012. But not released as a new draft) Feedback welcome

:startreplace

It's called 'Operator Pending',
but it seems a better name would

be 'Motion Pending'.

r

:startgreplace

motion or
text object

c

Printable
Character,
NL or CR

C cc operatorEsc

motion or
text object

Ctrl-C

r

Esc

Ctrl-X Ctrl-X

v V Ctrl-V

gv

gv

Ctrl-C

Ctrl-C

s

S

R

J

gJ

u

U

g?

Ctrl-V

Ctrl-Q

Ctrl-V

Ctrl-Q

gi

Ctrl-C

gr

gr

Note: Esc does not cancel in this mode. Esc enters ^[character!
In fact any special character, such as <Tab>, can be entered directly.

Ctrl-C

Ctrl-C

Stops visual mode

Ctrl-C

Esc

undocumented

Ctrl-C

Ctrl-O

Visual Replace Character Pending

Visual Virtual Replace Character Pending

Printable and
some Special

CharactersEsc Ctrl-C

Printable
Character,
NL or CR Ctrl-V Ctrl-Q Ctrl-QCtrl-V

Note: s is equivalent to c from visual mode

Note: R is equivalent to S in visual mode (Vim help says R may change after Vim 7.3?)
Also note, S is overridden by the surround.vim plugin from visual mode.

Equivalent

5 Let’s learn Vim

5.1 The Basics

Vim is the name of the terminal command, vim. Please don’t be scared of terminals,

they’re really quite simple. To open file.txt in vim, just run vim file.txt.

From there you can edit text just knowing this

• Press i to enter insert mode, and type some text

• Press Esc to stop writing text (go to normalmode)

• Type :wq to save your file and exit.

7

5.2 A little bit more

For going through your edits

• u undoes the last change

• Ctrl + r re-does the last change

For making and using text selections

• v to start a selection

• y to yank (copy) the text to the clipboard

• p to paste

• d to delete

Demo

6 More Vim

6.1 Aside — shortened shortcut notation

• We can do better than typing Ctrl + a, or Shift + i each time.

• So, we perform the following contractions

– Shift + a becomes A

– Control + a becomes C-a

– Alt + a becomes M-a1

– Control + Alt + Shift + a becomes C-M-A
isn’t that easier?

1M not A because Alt used to be called Meta

8

../Demos/1-basics.txt

6.2 Insert Mode

• Enter using one of i I a A o O gi

– i insert at point

– I insert at start of line

– a insert after point

– A insert at end of line

– o insert on new line above

– O insert on new line below

– gi insert at last edit

• C-w to delete the last word

• C-u to delete the last line

Demo

6.3 Visual mode

• Make a selection using on of v V C-v gv

– v visual character mode

– V visual line mode

– C-v visual blockmode (rectangle)

– gv last visual selection

• o switch between start/end of selection

• grow/shrink selection with normal cursor movement

Demo

9

../Demos/2-insert.txt
../Demos/3-visual.txt

6.4 Actions on a selection

• d delete

• c change content (delete and enter insert mode)

• y (yank) copy selection to clipboard

• ~ swap case

• u make lowercase

• U make uppercase

Demo

6.5 More actions on a selection

• ! run selection though an external program

• = re-indent

• > shift right

• < shift left

Demo

6.6 ’Quick’ actions

• Some action don’t need a selection to act on

• If you press the key twice, they’ll simply act on the current line

• This works for

– dd delete line

– yy yank (copy) line

10

../Demos/4-simple-actions.txt
../Demos/5-simple-code-actions.py

– cc change line

– == re-indent line

– >> shift line right

– << shift line left

• You can also use x to delete the character under the cursor, or the active selection

6.7 Text objects

• Used while in visual mode, or after an action (e.g. d for delete)

• Performed from the current cursor

• Can be prefixed with i or a

– i selects the ’inner’ object

– a selects the ’outer’ object

6.8 Text objects — a list

• w word

• p paragraph

• b brackets, or () , [], {}, <> if you want to be specific

• ' or " for quoted text

6.9 Text objects — an example

as

Here is some text. Isn’t that nice (yes it is).

11

w iw aw ab

is

Often one likes to "manipulate" text. Applications
ip often make text easy to write, clunky to edit.
ap

That’s why modal editing is nice.

Demo

6.10 Movements

Has the same effect as arrow keys, Home, and End.

Used for moving the current cursor, and shrinking/growing a selection.

6.11 Movements — overview

12

../Demos/6-simple-objects.txt

6.12 Movements — put another way

6.12.1 Micro

target forwards forward upto backwards back upto

word w e b ge
x f x t x F x T x

6.12.2 Macro

target start end

line 0
line content ^ $
sentence ()
paragraph { }
document gg G
page C-b C-f

6.13 Movements — an example

gg
{ w fc tl $
↓ ↓ ↓ ↓ ↓
Pretend there is a cursor at the start of this line,
then look around at the various movements.

↑
0 ^ Tc Fd) }
↓ ↓ ↓ ↓ ↓

Pretend the cursor is at the end of this now.
↑
G

Demo (Prose) Demo (Code)

6.14 Count prefix

Want to do something multiple times, for example not just delete the next word (dw), but
the next three words?

13

../Demos/7-movements-prose.txt
../Demos/8-movements-objects-code.py

It’s easy! Just type the number of times you want to do it before or during the action.

In this example, 3-delete-word (3dw) or delete-3-words (d3w) does the trick.

This works for everything though, not just words :)

6.15 Structure of a vim operation

• [optional] Count

• Action

• Movement or Text Object

6.16 Command mode

• A way to tell vim to do non-text-editing stuff

• Enter command mode with :

• This is how you:

– :w write a file

– :q quit vim

– :wq write a file, and quit

– and more

7 Even more Vim

7.1 Oh yes, there’s more

You’ve just seen how to perform ’basic’ operations in vim.

Don’t worry, while it may look intimidating, if you try this out you’ll find yourself picking

14

it up quickly — the mnemonic-ness helps a lot.

Vim does a bit more though, so we’ll go over that for fun (and profit).

7.2 Marks — saving

• A way to save a position

• Save the current location with m? where ? is a letter (a-z) which serves as a unique

identifier

– Lower case letters are local to the file

– Upper case letters work globally

7.3 Marks — accessing

• 'a goes to the line of mark a

• `a goes to the position of a

• '' and `` go to your last line/position respectively

• '. / `. goes to the line/position of the last edit

Demo

7.4 Registers

• Like marks, just for your text.

• You can basically save text to a named spot.

• "a to "z save the selected text set a register.

• "A to "Z add the selection to the register

• You need to add an action, e.g.

15

../Demos/9-marks.txt

– "ay yanks (copies) an active selection to register a

– "ayvap yanks (copies) the current paragraph to register a

– "ap pastes the content of register a

– "Ayiw adds the current word to register a

Demo

7.5 Macros (mini)

. repeats the last action

Demo

7.6 Recording a named macro

• qa starts recording a macro saved to a

• do the things
tm

• q to stop recording

7.7 Using a named macro

• @a to execute macro a

• @@ to execute the last macro

• 22@a to execute a 22 times. . .

7.8 Editing an existing macro

• You can just use the register functionality

• "ap pastes the content of macro a

16

../Demos/10-registers.txt
../Demos/11-dot-macro.txt

• Edit, select new macro content

• "ay writes to the macro a

7.9 A named macro — example

qs $ S) Ret "ayib dab x ^ "aP a : Spc Esc ^ <down> q

7.9.1 What does that do!?

• $ go to end of line

• S) search backwards for)

• Ret go to the first match

• "ayib copy the content of the parenthesis to register a

• dab delete the parenthesised content

• x delete the current character

• ^ go to the start of the content

• "aP paste content of register a

• a : Spc Esc enter insert mode after the content, and add “: ” before returning to

normal mode

• ^ go to the start of the content

• <down> move the cursor down one line

7.10 A named macro — example explained

Ok, what does that really do?

• Find the last parenthesised content in a line, take it out and bring it to the front

17

If one called it on the following line for example

I need to make some slides (Due Thursday) on vim

becomes

Due Thursday: I need to make some slides on vim

Demo

7.11 Search

• / search forwards

• ? search backwards

• n next result

• N previous result

• * search forwards, for word under cursor

• # search backwards, for word under cursor

7.12 Replace

• :s/pattern/replacement
acts on the current line

• :%s/pattern/replacement
acts on the current file

• :'<,'>s/pattern/replacement
acts on the current selection

• You can use regex: \(...\) to match, \1 to reference

18

../Demos/12-named-macro.txt

7.13 This seems like a lot of work

It is, but it’s easy to gradually build your skill. We spend so much time editing text that I

think it’s worth using a method which improves the experience, even if it takes a bit of

time to learn.

Is It Worth the Time? Don’t forget the time you spend finding the chart to look up what you save. And the
time spent reading this reminder about the time spent. And the time trying to figure out if either of those
actually make sense. Remember, every second counts toward your life total, including these right now.

7.14 Resources

• A nice big Vim Cheat Sheet

• Vim functions overlayed on a keyboard

• Interactive Vim tutorial: https://www.openvim.com/

• Vim navigation in Firefox: tridactyl (add-on page)

• Vim navigation in Chrome: https://vimium.github.io/

• Blog post: Everyone Who Tried to Convince Me to use Vim was Wrong

8 Q&A

19

https://vim.rtorr.com/
https://www.glump.net/_media/howto/desktop/vim-graphical-cheat-sheet-and-tutorial/vi-vim-cheat-sheet-and-tutorial.pdf
https://www.openvim.com/
https://github.com/tridactyl/tridactyl
https://addons.mozilla.org/en-us/firefox/addon/tridactyl-vim/
https://vimium.github.io/
https://yehudakatz.com/2010/07/29/everyone-who-tried-to-convince-me-to-use-vim-was-wrong/

	'Normal' editing
	Standard keybindings
	Application-specific keybindings
	Word
	vs Code

	The problem with normal editing
	The problem with normal editing
	Mathematical shortcut limit
	Solution? Add a prefix key (vs Code style)
	Solution! Modal editing

	Modal Editing
	Observation: There are way more keys than modifiers
	Use them keys
	Use them keys — how?
	Use them keys — an example
	The mathematical advantage
	The mnemonic advantage
	The ergonomic advantage
	The capability curve

	Vim
	What is it?
	The (main) vim modes
	A simple diagram
	Modal madness

	Let's learn Vim
	The Basics
	A little bit more

	More Vim
	Aside — shortened shortcut notation
	Insert Mode
	Visual mode
	Actions on a selection
	More actions on a selection
	'Quick' actions
	Text objects
	Text objects — a list
	Text objects — an example
	Movements
	Movements — overview
	Movements — put another way
	Micro
	Macro

	Movements — an example
	Count prefix
	Structure of a vim operation
	Command mode

	Even more Vim
	Oh yes, there's more
	Marks — saving
	Marks — accessing
	Registers
	Macros (mini)
	Recording a named macro
	Using a named macro
	Editing an existing macro
	A named macro — example
	What does that do!?

	A named macro — example explained
	Search
	Replace
	This seems like a lot of work
	Resources

	Q&A

