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Keeping track of files is hard



We’ve all seen it before
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We’ve all seen it before (2)
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The CompSci Group Project issue

• Your group project is due tonight and your code is ready for
submission

• While running a final test (for good luck ) you discover a minor bug
your group member forgot about

• You accidentally changed working code and ended up breaking a
chunk of code you don’t understand

• You no longer remember what was and wasn’t there

• It is 23:58

3



An actual physics report I was working on

• I’m a last minute person, report is due tomorrow

• It’s manageable, I typed up 2
3 of it yesterday

• I’m moving an image in the Discussion section around, Microsoft
Word freezes

• I wait a few minutes, oh well, looks like I need to Force Quit

• Re-open the document: Word complains that it’s corrupted, and that
it can’t restore the file

• I look at my Report v3.docx, it’s from several hours ago

• I need to re-do at least half of the work I’ve done

• I settle in for a later night than I was planning on.. .

4



Introduction



Version control systems — recording changes to files over time

It keeps track of changes.
It keeps track of changes really well.

• My changes

• Your group member’s changes

• The version that’s been sent to the customer

• The version that’s being tested with an urgent bugfix

• The new experimental version that might break everything else

• Whatever other changes have happened.. .

5



What is Git?

• Open source project circa. 2005 (developed for the Linux kernel )

• A command line utility (but there are graphical interfaces)

• Imagine git as something sitting on top of your file system

• A distributed version control system — d v c s

• Keeps all change info in a .git folder
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Aside: Distributed Version Control Systems (d v c s)

A thing that solves our earlier problems

Version control system A system recording changes to files over time

Distributed No main server, full history available to anyone
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Git: A structured way of storing versions and changes

• Every change is stored as a new compressed file, and can easily
generate the difference with a previous version

• This creates a structure known as a d a g1

• git operates on —and provides an interface to— this structure

1Directed Acyclic Graph
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What does this mean?

You’ll have no reason to ever lose your work again, and unparalleled ability
to traverse and review changes made.
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Getting started



Setup

• Download git

• There are nice graphical interfaced, but we’ll introduce those later

• The git commands are universal, and the simplest way to get started
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Creating a repository (i.e. project)

Create a new directory (e.g. my big project), open a terminal within
it and execute

git init

Congratulations, you’ve created a repository
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Clone a repository

Want to build on somebody else’s work? That’s easy!

git clone /path/to/repository

This also works with remote servers, e.g. git clone

https://github.com/tecosaur/vscode-settings.git.

12



Workflow

Local repo contains three trees in the .git file

• Working directory — Where all the files are

• Index — The staging area

• HEAD — The latest commit
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Add and commit

After changing some files you add it to the index tree

git add $filename

git add *

Then to actually commit them to the HEAD

git commit -m "Message"

All commits need a message and are given an identifying serial number,
which is a hash of its structure and contents.

Your changes are still local however
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What’s with these messages?

There is no hard and fast rule but the idea is to describe what this commit
does

• Adds support for x. Fixes bug that caused y.
• Removes changes made in commit z.
• Add discussion of errors to report

Looking at a list of commit messages should give a decent idea of what
happened to the code. Try to improve on the following commit messages:

• General commit
• Made some changes
• Bug-fixes
• Debugging 4: Reloaded (continued)

• I’ve actually done this before
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So, what are we doing?

Git tracks the changes between files

• Additions

• Deletions

Starting from a HEAD and given a sequence of commits, you could follow
what each says and end up at the same final point
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The next few steps



Pushing and Pulling

To send your committed changes back to someone else’s copy

git push origin $branch

And to fetch some new changes

git pull
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Branching

Used to develop features isolated from the main code (remember your
tragic mistake just before submitting?) either master or main is the default
branch. To create a new branch named “feature”

git checkout -b feature

Switch back to master/main

git checkout master/main
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Branching

A branch — or any other change — is not available to others unless you
push it to your remote repository

git push origin $branch
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Merging

To bring down any changes made by someone or somewhere else

git pull

To merge another branch into your current branch (e.g. master)

git merge $branch

This will attempt to merge any changes from $branch into the branch
your current HEAD is on
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Merge Conflicts

In both cases git tries to auto-merge changes. Conflicts — two different
changes to the same part of the same file — need to be resolved manually
and added before trying again.

git add $filename

One can also preview changes (to see if conflicts will occur )

git diff $source_branch $target_branch
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Tagging

When you hit a major milestone (it works, we’ve submitted etc.) you can
tag a particular commit

git tag 1.0.0 2b331ie545

The 2b... is the first 10 characters of the commit i d you want to reference.
You can find a commit i d by looking at the log.
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Log

You can study a repository history using git log. There are many nice
options

git log --pretty=oneline

Or maybe you’d like to see some a s c i i art

git log --graph --oneline --decorate --all

See only which files have changed

git log --name-status

git log --help
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Oooops

Halp, I destroyed everything.
All the files are gone, I’ve replaced them with photos of Nicholas Cage, I’m
tired and in need of a hug.

I wish I could go back in time
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No problem!

I wish I could go back in time

You can! You can replace local changes with

git checkout -- $filename

Or if you’ve committed a bunch of stuff that’s wrong and just want to copy
from the main repository — you could git clone a new copy, or you can

git fetch origin

git reset --hard origin/master

25



Summary



Summary

• Git tracks changes to files
• Changes are stored as commits (cheap and plentiful)
• A group of commits can be pushed (setting them in stone — kinda)

• Branches allow you to develop new things in isolation
• Can be merged back together again when finished
• You can move through time and code together

There’s a lot more you can recover from
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Hosted Git

GitHub is a popular online host — software forge — for Git. Plus some (a
lot) of stuff

Alternatives include:

• GitLab

• BitBucket

• SourceHut

These take care of backups and many, many fancy things you will likely
learn in good time
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* Keeping track of files is hard
** We've all seen it before 😫
[[file:file-mess-1.png]]
** We've all seen it before (2) 😫 😫
[[file:file-mess-2.png]]
** The CompSci Group Project issue
+ Your group project is due tonight and your code is ready for submission
+ While running a final test (for good luck 🤞) you discover a minor *bug* your
  group member forgot about
+ You accidentally changed working code and ended up breaking a chunk of code
  you don't understand 😱
+ You no longer remember what was and wasn't there
+ It is 23:58 😰
** An actual physics report I was working on
+ I'm a last minute person, report is due tomorrow
+ It's manageable, I typed up \(\frac{2}{3}\) of it yesterday
+ I'm moving an image in the /Discussion/ section around, Microsoft Word freezes ❄
+ I wait a few minutes, oh well, looks like I need to Force Quit
+ Re-open the document: Word complains that it's corrupted, and that it can't
  restore the file 😑
+ I look at my ~Report v3.docx~, it's from several hours ago
+ I need to re-do at least half of the work I've done 😩
+ I settle in for a later night than I was planning on... ⏳
* Introduction
** Version control systems --- recording changes to files over time
It keeps track of changes. \\
It keeps track of changes /really/ well.
+ My changes 🙂
+ Your group member's changes 😀
+ The version that's been sent to the customer 🤑
+ The version that's being tested with an urgent bugfix  😁
+ The new experimental version that might break everything else 😇
+ Whatever other changes have happened... 😍
** What is Git?
+ Open source project /circa./ 2005 (developed for the Linux kernel 🐧)
+ A command line utility (but there are graphical interfaces)
+ Imagine src_sh{git} as something sitting on top of your file system
+ A distributed 📡 version control system --- DVCS
+ Keeps all change info in a ~.git~ folder
** Aside: Distributed Version Control Systems (DVCS)
A thing that solves our earlier problems
+ *Version control system* :: A system recording changes to files over time
+ *Distributed* :: No main server, full history available to anyone
** Git: A structured way of storing versions and changes
+ Every change is stored as a new compressed file, and can easily generate the
  difference with a previous version
+ This creates a structure known as a DAG[fn::Directed Acyclic Graph]
+ src_sh{git} operates on ---and provides an interface to--- this structure

  [[file:git-rebaseing.png]]
** What does this mean?

You'll have no reason to *ever* lose your work again, and /unparalleled/ ability to
traverse and review changes made.

* Getting started
** Setup

+ Download src_sh{git}
+ There are nice graphical interfaced, but we'll introduce those later
+ The git commands are universal, and the simplest way to get started

** Creating a repository (i.e. project)

Create a new directory 📁 (e.g. ~my big project~), open a terminal within it and
execute
#+begin_center
src_sh{git init}
#+end_center
Congratulations, you've created a repository 📔

** Clone a repository

Want to build on somebody else's work? That's easy!

#+begin_center
src_sh{git clone /path/to/repository}
#+end_center

This also works with remote servers,  e.g. src_sh{git clone
https://github.com/tecosaur/vscode-settings.git}.

** Workflow
Local repo contains three trees in the .git file
+ Working directory --- Where all the files are
+ Index --- The staging area
+ =HEAD= --- The latest commit
** Add and commit
After changing some files you add it to the index tree

#+begin_center
src_sh{git add $filename} \\
src_sh{git add *}
#+end_center

Then to actually commit them to the =HEAD=
#+begin_center
src_sh{git commit -m "Message"}
#+end_center
All commits need a message and are given an identifying serial number, which is
a hash of its structure and contents.

Your changes are still local however
** What's with these messages?
There is no hard and fast rule but the idea is to *describe* what this commit does
+ Adds support for /x/. Fixes bug that caused /y/.
+ Removes changes made in commit /z/.
+ Add discussion of errors to report

Looking at a list of commit messages should give a decent idea of what happened
to the code. Try to improve on the following commit messages:
+ General commit
+ Made some changes
+ Bug-fixes
+ Debugging 4: Reloaded (continued)
  - /I've actually done this before/
** So, what are we doing?
Git tracks the changes between files
+ Additions
+ Deletions
Starting from a =HEAD= and given a sequence of commits, you could follow what each
says and end up at the same final point
* The next few steps
** Pushing and Pulling

To send your committed changes back to someone else's copy 📡
#+begin_center
src_sh{git push origin $branch}
#+end_center

And to fetch some new changes 🛰
#+begin_center
src_sh{git pull}
#+end_center

** Branching
Used to develop features isolated from the main code (remember your tragic
mistake just before submitting?) either master or main is the default branch.
To create a new branch named "feature"
#+begin_center
src_sh{git checkout -b feature}
#+end_center
Switch back to master/main
#+begin_center
src_sh{git checkout master/main}
#+end_center

#+attr_latex: :width 0.7\linewidth
[[file:git-branching.png]]
** Branching

A branch --- or any other change --- is *not available to others unless* you *push* it to your remote repository
#+begin_center
src_sh{git push origin $branch}
#+end_center

** Merging
To bring down any changes made by someone or somewhere else
#+begin_center
src_sh{git pull}
#+end_center
To merge another branch into your current branch (e.g. ~master~)
#+begin_center
src_sh{git merge $branch}
#+end_center
This will attempt to merge any changes from src_sh{$branch} into the branch your
current =HEAD= is on

[[file:git-merging.png]]
** Merge Conflicts

In both cases ~git~ tries to auto-merge changes. *Conflicts* --- two different
changes to the same part of the same file --- need to be resolved
manually and added before trying again.
#+begin_center
src_sh{git add $filename}
#+end_center
One can also *preview* changes (to see if conflicts will occur 👀)
#+begin_center
src_sh{git diff $source_branch $target_branch}
#+end_center

\hfill

[[file:git-merging.png]]
** Tagging
When you hit a major milestone 🙌 (it works, we've submitted etc.) you can tag a
particular commit
#+begin_center
src_sh{git tag 1.0.0 2b331ie545}
#+end_center
The ~2b...~ is the first 10 characters of the commit ID you want to reference.
You can find a commit ID by looking at the *log*.
** Log
You can study a repository history using src_sh{git log}.
There are many nice options
#+begin_center
src_sh{git log --pretty=oneline}
#+end_center
Or maybe you'd like to see some ASCII art
#+begin_center
src_sh{git log --graph --oneline --decorate --all}
#+end_center
See only which files have changed
#+begin_center
src_sh{git log --name-status}\\
src_sh{git log --help}
#+end_center
** Oooops
Halp, I destroyed *everything*.\\
All the files are gone, I've replaced them with photos of Nicholas Cage, I'm
tired and in need of a hug.

#+begin_quote
I wish I could go back in time ⏲
#+end_quote

#+attr_latex: :width 0.2\linewidth
#+attr_org: :width 50
[[https://cdn3.iconfinder.com/data/icons/back-to-the-future/512/delorean-04-512.png]]

** No problem!
#+begin_quote
I wish I could go back in time ⏲
#+end_quote

You can! You can replace local changes with
#+begin_center
src_sh{git checkout -- $filename}
#+end_center
Or if you've committed a bunch of stuff that's wrong and just want to copy from
the main repository --- you could src_sh{git clone} a new copy, or you can
#+begin_center
src_sh{git fetch origin}\\
src_sh{git reset --hard origin/master}
#+end_center

* Summary
** Summary
+ Git tracks changes to files
  - Changes are stored as commits (cheap and plentiful)
  - A group of commits can be pushed (setting them in stone --- kinda)
+ Branches allow you to develop new things in isolation
  - Can be merged back together again when finished
  - You can move through time and code together
   
There's a lot more you can recover from
** Hosted Git

GitHub is a popular online host --- software forge --- for Git. Plus some (a lot) of stuff

Alternatives include:
+ [[https://gitlab.com/][GitLab]]
+ [[https://bitbucket.org/][BitBucket]]
+ [[https://sourcehut.org/][SourceHut]]
These take care of backups and many, many fancy things you will likely learn in good time
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\maketitle

\section{Keeping track of files is hard}
\label{sec:-keeping-track}
\begin{frame}[label={sec:weve-all-seen}]{We've all seen it before \emoji{1f62b}}
\begin{center}
\includegraphics[width=.9\linewidth]{file-mess-1.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:keeping-track-files}]{We've all seen it before (2) \emoji{1f62b} \emoji{1f62b}}
\begin{center}
\includegraphics[width=.9\linewidth]{file-mess-2.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:compsci-group-project}]{The CompSci Group Project issue}
\begin{itemize}
\item Your group project is due tonight and your code is ready for submission
\item While running a final test (for good luck \emoji{1f91e}) you discover a minor \alert{bug} your
group member forgot about
\item You accidentally changed working code and ended up breaking a chunk of code
you don't understand \emoji{1f631}
\item You no longer remember what was and wasn't there
\item It is 23:58 \emoji{1f630}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:an-actual-physics},fragile]{An actual physics report I was working on}
 \begin{itemize}
\item I'm a last minute person, report is due tomorrow
\item It's manageable, I typed up \(\frac{2}{3}\) of it yesterday
\item I'm moving an image in the \emph{Discussion} section around, Microsoft Word freezes \emoji{2744}
\item I wait a few minutes, oh well, looks like I need to Force Quit
\item Re-open the document: Word complains that it's corrupted, and that it can't
restore the file \emoji{1f611}
\item I look at my \texttt{Report v3.docx}, it's from several hours ago
\item I need to re-do at least half of the work I've done \emoji{1f629}
\item I settle in for a later night than I was planning on\ldots{} \emoji{23f3}
\end{itemize}
\end{frame}
\section{Introduction}
\label{sec:introduction}
\begin{frame}[label={sec:version-control-systems}]{Version control systems --- recording changes to files over time}
It keeps track of changes. \\
It keeps track of changes \emph{really} well.
\begin{itemize}
\item My changes \emoji{1f642}
\item Your group member's changes \emoji{1f600}
\item The version that's been sent to the customer \emoji{1f911}
\item The version that's being tested with an urgent bugfix  \emoji{1f601}
\item The new experimental version that might break everything else \emoji{1f607}
\item Whatever other changes have happened\ldots{} \emoji{1f60d}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:what-git},fragile]{What is Git?}
 \begin{itemize}
\item Open source project \emph{circa.} 2005 (developed for the Linux kernel \emoji{1f427})
\item A command line utility (but there are graphical interfaces)
\item Imagine \Verb{\color{EFD}\textcolor[HTML]{986801}{git}} as something sitting on top of your file system
\item A distributed \emoji{1f4e1} version control system --- \acr{dvcs}
\item Keeps all change info in a \texttt{.git} folder
\end{itemize}
\end{frame}
\begin{frame}[label={sec:aside-distributed-version}]{Aside: Distributed Version Control Systems (\acr{dvcs})}
A thing that solves our earlier problems
\begin{description}
\item[{\alert{Version control system}}] A system recording changes to files over time
\item[{\alert{Distributed}}] No main server, full history available to anyone
\end{description}
\end{frame}
\begin{frame}[label={sec:git-structured-way},fragile]{Git: A structured way of storing versions and changes}
 \begin{itemize}
\item Every change is stored as a new compressed file, and can easily generate the
difference with a previous version
\item This creates a structure known as a \acr{dag}\footnote{Directed Acyclic Graph}
\item \Verb{\color{EFD}\textcolor[HTML]{986801}{git}} operates on ---and provides an interface to--- this structure

\begin{center}
\includegraphics[width=.9\linewidth]{git-rebaseing.png}
\end{center}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:what-does-this}]{What does this mean?}
You'll have no reason to \alert{ever} lose your work again, and \emph{unparalleled} ability to
traverse and review changes made.
\end{frame}

\section{Getting started}
\label{sec:getting-started}
\begin{frame}[label={sec:setup},fragile]{Setup}
 \begin{itemize}
\item Download \Verb{\color{EFD}\textcolor[HTML]{986801}{git}}
\item There are nice graphical interfaced, but we'll introduce those later
\item The git commands are universal, and the simplest way to get started
\end{itemize}
\end{frame}

\begin{frame}[label={sec:creating-repository-ie},fragile]{Creating a repository (i.e. project)}
 Create a new directory \emoji{1f4c1} (e.g. \texttt{my big project}), open a terminal within it and
execute
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} init}
\end{center}
Congratulations, you've created a repository \emoji{1f4d4}
\end{frame}

\begin{frame}[label={sec:clone-repository},fragile]{Clone a repository}
 Want to build on somebody else's work? That's easy!

\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} clone /path/to/repository}
\end{center}

This also works with remote servers,  e.g. \Verb{\color{EFD}\textcolor[HTML]{986801}{git} clone https://github.com/tecosaur/vscode-settings.git}.
\end{frame}

\begin{frame}[label={sec:workflow},fragile]{Workflow}
 Local repo contains three trees in the .git file
\begin{itemize}
\item Working directory --- Where all the files are
\item Index --- The staging area
\item \verb~HEAD~ --- The latest commit
\end{itemize}
\end{frame}
\begin{frame}[label={sec:add-commit},fragile]{Add and commit}
 After changing some files you add it to the index tree

\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} add \$\EFv{filename}} \\
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} add *}
\end{center}

Then to actually commit them to the \verb~HEAD~
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} commit -m \EFs{"Message"}}
\end{center}
All commits need a message and are given an identifying serial number, which is
a hash of its structure and contents.

Your changes are still local however
\end{frame}
\begin{frame}[label={sec:whats-with-these}]{What's with these messages?}
There is no hard and fast rule but the idea is to \alert{describe} what this commit does
\begin{itemize}
\item Adds support for \emph{x}. Fixes bug that caused \emph{y}.
\item Removes changes made in commit \emph{z}.
\item Add discussion of errors to report
\end{itemize}

Looking at a list of commit messages should give a decent idea of what happened
to the code. Try to improve on the following commit messages:
\begin{itemize}
\item General commit
\item Made some changes
\item Bug-fixes
\item Debugging 4: Reloaded (continued)
\begin{itemize}
\item \emph{I've actually done this before}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:so-what-are},fragile]{So, what are we doing?}
 Git tracks the changes between files
\begin{itemize}
\item Additions
\item Deletions
\end{itemize}
Starting from a \verb~HEAD~ and given a sequence of commits, you could follow what each
says and end up at the same final point
\end{frame}
\section{The next few steps}
\label{sec:-next-few}
\begin{frame}[label={sec:pushing-pulling},fragile]{Pushing and Pulling}
 To send your committed changes back to someone else's copy \emoji{1f4e1}
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} push origin \$\EFv{branch}}
\end{center}

And to fetch some new changes \emoji{1f6f0}
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} pull}
\end{center}
\end{frame}

\begin{frame}[label={sec:branching},fragile]{Branching}
 Used to develop features isolated from the main code (remember your tragic
mistake just before submitting?) either master or main is the default branch.
To create a new branch named ``feature''
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} checkout -b feature}
\end{center}
Switch back to master/main
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} checkout master/main}
\end{center}

\begin{center}
\includegraphics[width=0.7\linewidth]{git-branching.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:next-few-steps},fragile]{Branching}
 A branch --- or any other change --- is \alert{not available to others unless} you \alert{push} it to your remote repository
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} push origin \$\EFv{branch}}
\end{center}
\end{frame}

\begin{frame}[label={sec:merging},fragile]{Merging}
 To bring down any changes made by someone or somewhere else
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} pull}
\end{center}
To merge another branch into your current branch (e.g. \texttt{master})
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} merge \$\EFv{branch}}
\end{center}
This will attempt to merge any changes from \Verb{\color{EFD}\$\EFv{branch}} into the branch your
current \verb~HEAD~ is on

\begin{center}
\includegraphics[width=.9\linewidth]{git-merging.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:merge-conflicts},fragile]{Merge Conflicts}
 In both cases \texttt{git} tries to auto-merge changes. \alert{Conflicts} --- two different
changes to the same part of the same file --- need to be resolved
manually and added before trying again.
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} add \$\EFv{filename}}
\end{center}
One can also \alert{preview} changes (to see if conflicts will occur \emoji{1f440})
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} diff \$\EFv{source\_branch} \$\EFv{target\_branch}}
\end{center}

\hfill

\begin{center}
\includegraphics[width=.9\linewidth]{git-merging.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:tagging},fragile]{Tagging}
 When you hit a major milestone \emoji{1f64c} (it works, we've submitted etc.) you can tag a
particular commit
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} tag 1.0.0 2b331ie545}
\end{center}
The \texttt{2b...} is the first 10 characters of the commit \acr{id} you want to reference.
You can find a commit \acr{id} by looking at the \alert{log}.
\end{frame}
\begin{frame}[label={sec:log},fragile]{Log}
 You can study a repository history using \Verb{\color{EFD}\textcolor[HTML]{986801}{git} log}.
There are many nice options
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} log --pretty=oneline}
\end{center}
Or maybe you'd like to see some \acr{ascii} art
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} log --graph --oneline --decorate --all}
\end{center}
See only which files have changed
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} log --name-status}\\
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} log --help}
\end{center}
\end{frame}
\begin{frame}[label={sec:oooops}]{Oooops}
Halp, I destroyed \alert{everything}.\\
All the files are gone, I've replaced them with photos of Nicholas Cage, I'm
tired and in need of a hug.

\begin{quote}
I wish I could go back in time \emoji{23f2}
\end{quote}

% fetched from https://cdn3.iconfinder.com/data/icons/back-to-the-future/512/delorean-04-512.png
\begin{center}
\includegraphics[width=0.2\linewidth]{/tmp/cdn3-iconfinder-com-data-icons-back-to-the-future-512-delorean-04-512.png}
\end{center}
\end{frame}

\begin{frame}[label={sec:no-problem},fragile]{No problem!}
 \begin{quote}
I wish I could go back in time \emoji{23f2}
\end{quote}

You can! You can replace local changes with
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} checkout -- \$\EFv{filename}}
\end{center}
Or if you've committed a bunch of stuff that's wrong and just want to copy from
the main repository --- you could \Verb{\color{EFD}\textcolor[HTML]{986801}{git} clone} a new copy, or you can
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} fetch origin}\\
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} reset --hard origin/master}
\end{center}
\end{frame}

\section{Summary}
\label{sec:-summary}
\begin{frame}[label={sec:summary}]{Summary}
\begin{itemize}
\item Git tracks changes to files
\begin{itemize}
\item Changes are stored as commits (cheap and plentiful)
\item A group of commits can be pushed (setting them in stone --- kinda)
\end{itemize}
\item Branches allow you to develop new things in isolation
\begin{itemize}
\item Can be merged back together again when finished
\item You can move through time and code together
\end{itemize}
\end{itemize}

There's a lot more you can recover from
\end{frame}
\begin{frame}[label={sec:hosted-git}]{Hosted Git}
GitHub is a popular online host --- software forge --- for Git. Plus some (a lot) of stuff

Alternatives include:
\begin{itemize}
\item \href{https://gitlab.com/}{GitLab}
\item \href{https://bitbucket.org/}{BitBucket}
\item \href{https://sourcehut.org/}{SourceHut}
\end{itemize}
These take care of backups and many, many fancy things you will likely learn in good time
\end{frame}
\end{document}


