
Git Good
Linus Torvalds’ Magical Time Machine

Timothy

2021-03-30

Keeping track of files is hard

We’ve all seen it before

1

We’ve all seen it before (2)

2

The CompSci Group Project issue

• Your group project is due tonight and your code is ready for
submission

• While running a final test (for good luck) you discover a minor bug
your group member forgot about

• You accidentally changed working code and ended up breaking a
chunk of code you don’t understand

• You no longer remember what was and wasn’t there

• It is 23:58

3

An actual physics report I was working on

• I’m a last minute person, report is due tomorrow

• It’s manageable, I typed up 2
3 of it yesterday

• I’m moving an image in the Discussion section around, Microsoft
Word freezes

• I wait a few minutes, oh well, looks like I need to Force Quit

• Re-open the document: Word complains that it’s corrupted, and that
it can’t restore the file

• I look at my Report v3.docx, it’s from several hours ago

• I need to re-do at least half of the work I’ve done

• I settle in for a later night than I was planning on.. .

4

Introduction

Version control systems — recording changes to files over time

It keeps track of changes.
It keeps track of changes really well.

• My changes

• Your group member’s changes

• The version that’s been sent to the customer

• The version that’s being tested with an urgent bugfix

• The new experimental version that might break everything else

• Whatever other changes have happened.. .

5

What is Git?

• Open source project circa. 2005 (developed for the Linux kernel)

• A command line utility (but there are graphical interfaces)

• Imagine git as something sitting on top of your file system

• A distributed version control system — d v c s

• Keeps all change info in a .git folder

6

Aside: Distributed Version Control Systems (d v c s)

A thing that solves our earlier problems

Version control system A system recording changes to files over time

Distributed No main server, full history available to anyone

7

Git: A structured way of storing versions and changes

• Every change is stored as a new compressed file, and can easily
generate the difference with a previous version

• This creates a structure known as a d a g1

• git operates on —and provides an interface to— this structure

1Directed Acyclic Graph

8

What does this mean?

You’ll have no reason to ever lose your work again, and unparalleled ability
to traverse and review changes made.

9

Getting started

Setup

• Download git

• There are nice graphical interfaced, but we’ll introduce those later

• The git commands are universal, and the simplest way to get started

10

Creating a repository (i.e. project)

Create a new directory (e.g. my big project), open a terminal within
it and execute

git init

Congratulations, you’ve created a repository

11

Clone a repository

Want to build on somebody else’s work? That’s easy!

git clone /path/to/repository

This also works with remote servers, e.g. git clone

https://github.com/tecosaur/vscode-settings.git.

12

Workflow

Local repo contains three trees in the .git file

• Working directory — Where all the files are

• Index — The staging area

• HEAD — The latest commit

13

Add and commit

After changing some files you add it to the index tree

git add $filename

git add *

Then to actually commit them to the HEAD

git commit -m "Message"

All commits need a message and are given an identifying serial number,
which is a hash of its structure and contents.

Your changes are still local however

14

What’s with these messages?

There is no hard and fast rule but the idea is to describe what this commit
does

• Adds support for x. Fixes bug that caused y.
• Removes changes made in commit z.
• Add discussion of errors to report

Looking at a list of commit messages should give a decent idea of what
happened to the code. Try to improve on the following commit messages:

• General commit
• Made some changes
• Bug-fixes
• Debugging 4: Reloaded (continued)

• I’ve actually done this before

15

So, what are we doing?

Git tracks the changes between files

• Additions

• Deletions

Starting from a HEAD and given a sequence of commits, you could follow
what each says and end up at the same final point

16

The next few steps

Pushing and Pulling

To send your committed changes back to someone else’s copy

git push origin $branch

And to fetch some new changes

git pull

17

Branching

Used to develop features isolated from the main code (remember your
tragic mistake just before submitting?) either master or main is the default
branch. To create a new branch named “feature”

git checkout -b feature

Switch back to master/main

git checkout master/main

18

Branching

A branch — or any other change — is not available to others unless you
push it to your remote repository

git push origin $branch

19

Merging

To bring down any changes made by someone or somewhere else

git pull

To merge another branch into your current branch (e.g. master)

git merge $branch

This will attempt to merge any changes from $branch into the branch
your current HEAD is on

20

Merge Conflicts

In both cases git tries to auto-merge changes. Conflicts — two different
changes to the same part of the same file — need to be resolved manually
and added before trying again.

git add $filename

One can also preview changes (to see if conflicts will occur)

git diff $source_branch $target_branch

21

Tagging

When you hit a major milestone (it works, we’ve submitted etc.) you can
tag a particular commit

git tag 1.0.0 2b331ie545

The 2b... is the first 10 characters of the commit i d you want to reference.
You can find a commit i d by looking at the log.

22

Log

You can study a repository history using git log. There are many nice
options

git log --pretty=oneline

Or maybe you’d like to see some a s c i i art

git log --graph --oneline --decorate --all

See only which files have changed

git log --name-status

git log --help

23

Oooops

Halp, I destroyed everything.
All the files are gone, I’ve replaced them with photos of Nicholas Cage, I’m
tired and in need of a hug.

I wish I could go back in time

24

No problem!

I wish I could go back in time

You can! You can replace local changes with

git checkout -- $filename

Or if you’ve committed a bunch of stuff that’s wrong and just want to copy
from the main repository — you could git clone a new copy, or you can

git fetch origin

git reset --hard origin/master

25

Summary

Summary

• Git tracks changes to files
• Changes are stored as commits (cheap and plentiful)
• A group of commits can be pushed (setting them in stone — kinda)

• Branches allow you to develop new things in isolation
• Can be merged back together again when finished
• You can move through time and code together

There’s a lot more you can recover from

26

Hosted Git

GitHub is a popular online host — software forge — for Git. Plus some (a
lot) of stuff

Alternatives include:

• GitLab

• BitBucket

• SourceHut

These take care of backups and many, many fancy things you will likely
learn in good time

27

https://gitlab.com/
https://bitbucket.org/
https://sourcehut.org/

	Keeping track of files is hard
	Introduction
	Getting started
	The next few steps
	Summary

#+title: Git Good
#+subtitle: Linus Torvalds' Magical Time Machine ⏰
#+author: Timothy
#+date: 2021-03-30
#+property: header-args :exports code
#+options: toc:nil

* Keeping track of files is hard
** We've all seen it before 😫
[[file:file-mess-1.png]]
** We've all seen it before (2) 😫 😫
[[file:file-mess-2.png]]
** The CompSci Group Project issue
+ Your group project is due tonight and your code is ready for submission
+ While running a final test (for good luck 🤞) you discover a minor *bug* your
 group member forgot about
+ You accidentally changed working code and ended up breaking a chunk of code
 you don't understand 😱
+ You no longer remember what was and wasn't there
+ It is 23:58 😰
** An actual physics report I was working on
+ I'm a last minute person, report is due tomorrow
+ It's manageable, I typed up \(\frac{2}{3}\) of it yesterday
+ I'm moving an image in the /Discussion/ section around, Microsoft Word freezes ❄
+ I wait a few minutes, oh well, looks like I need to Force Quit
+ Re-open the document: Word complains that it's corrupted, and that it can't
 restore the file 😑
+ I look at my ~Report v3.docx~, it's from several hours ago
+ I need to re-do at least half of the work I've done 😩
+ I settle in for a later night than I was planning on... ⏳
* Introduction
** Version control systems --- recording changes to files over time
It keeps track of changes. \\
It keeps track of changes /really/ well.
+ My changes 🙂
+ Your group member's changes 😀
+ The version that's been sent to the customer 🤑
+ The version that's being tested with an urgent bugfix 😁
+ The new experimental version that might break everything else 😇
+ Whatever other changes have happened... 😍
** What is Git?
+ Open source project /circa./ 2005 (developed for the Linux kernel 🐧)
+ A command line utility (but there are graphical interfaces)
+ Imagine src_sh{git} as something sitting on top of your file system
+ A distributed 📡 version control system --- DVCS
+ Keeps all change info in a ~.git~ folder
** Aside: Distributed Version Control Systems (DVCS)
A thing that solves our earlier problems
+ *Version control system* :: A system recording changes to files over time
+ *Distributed* :: No main server, full history available to anyone
** Git: A structured way of storing versions and changes
+ Every change is stored as a new compressed file, and can easily generate the
 difference with a previous version
+ This creates a structure known as a DAG[fn::Directed Acyclic Graph]
+ src_sh{git} operates on ---and provides an interface to--- this structure

 [[file:git-rebaseing.png]]
** What does this mean?

You'll have no reason to *ever* lose your work again, and /unparalleled/ ability to
traverse and review changes made.

* Getting started
** Setup

+ Download src_sh{git}
+ There are nice graphical interfaced, but we'll introduce those later
+ The git commands are universal, and the simplest way to get started

** Creating a repository (i.e. project)

Create a new directory 📁 (e.g. ~my big project~), open a terminal within it and
execute
#+begin_center
src_sh{git init}
#+end_center
Congratulations, you've created a repository 📔

** Clone a repository

Want to build on somebody else's work? That's easy!

#+begin_center
src_sh{git clone /path/to/repository}
#+end_center

This also works with remote servers, e.g. src_sh{git clone
https://github.com/tecosaur/vscode-settings.git}.

** Workflow
Local repo contains three trees in the .git file
+ Working directory --- Where all the files are
+ Index --- The staging area
+ =HEAD= --- The latest commit
** Add and commit
After changing some files you add it to the index tree

#+begin_center
src_sh{git add $filename} \\
src_sh{git add *}
#+end_center

Then to actually commit them to the =HEAD=
#+begin_center
src_sh{git commit -m "Message"}
#+end_center
All commits need a message and are given an identifying serial number, which is
a hash of its structure and contents.

Your changes are still local however
** What's with these messages?
There is no hard and fast rule but the idea is to *describe* what this commit does
+ Adds support for /x/. Fixes bug that caused /y/.
+ Removes changes made in commit /z/.
+ Add discussion of errors to report

Looking at a list of commit messages should give a decent idea of what happened
to the code. Try to improve on the following commit messages:
+ General commit
+ Made some changes
+ Bug-fixes
+ Debugging 4: Reloaded (continued)
 - /I've actually done this before/
** So, what are we doing?
Git tracks the changes between files
+ Additions
+ Deletions
Starting from a =HEAD= and given a sequence of commits, you could follow what each
says and end up at the same final point
* The next few steps
** Pushing and Pulling

To send your committed changes back to someone else's copy 📡
#+begin_center
src_sh{git push origin $branch}
#+end_center

And to fetch some new changes 🛰
#+begin_center
src_sh{git pull}
#+end_center

** Branching
Used to develop features isolated from the main code (remember your tragic
mistake just before submitting?) either master or main is the default branch.
To create a new branch named "feature"
#+begin_center
src_sh{git checkout -b feature}
#+end_center
Switch back to master/main
#+begin_center
src_sh{git checkout master/main}
#+end_center

#+attr_latex: :width 0.7\linewidth
[[file:git-branching.png]]
** Branching

A branch --- or any other change --- is *not available to others unless* you *push* it to your remote repository
#+begin_center
src_sh{git push origin $branch}
#+end_center

** Merging
To bring down any changes made by someone or somewhere else
#+begin_center
src_sh{git pull}
#+end_center
To merge another branch into your current branch (e.g. ~master~)
#+begin_center
src_sh{git merge $branch}
#+end_center
This will attempt to merge any changes from src_sh{$branch} into the branch your
current =HEAD= is on

[[file:git-merging.png]]
** Merge Conflicts

In both cases ~git~ tries to auto-merge changes. *Conflicts* --- two different
changes to the same part of the same file --- need to be resolved
manually and added before trying again.
#+begin_center
src_sh{git add $filename}
#+end_center
One can also *preview* changes (to see if conflicts will occur 👀)
#+begin_center
src_sh{git diff $source_branch $target_branch}
#+end_center

\hfill

[[file:git-merging.png]]
** Tagging
When you hit a major milestone 🙌 (it works, we've submitted etc.) you can tag a
particular commit
#+begin_center
src_sh{git tag 1.0.0 2b331ie545}
#+end_center
The ~2b...~ is the first 10 characters of the commit ID you want to reference.
You can find a commit ID by looking at the *log*.
** Log
You can study a repository history using src_sh{git log}.
There are many nice options
#+begin_center
src_sh{git log --pretty=oneline}
#+end_center
Or maybe you'd like to see some ASCII art
#+begin_center
src_sh{git log --graph --oneline --decorate --all}
#+end_center
See only which files have changed
#+begin_center
src_sh{git log --name-status}\\
src_sh{git log --help}
#+end_center
** Oooops
Halp, I destroyed *everything*.\\
All the files are gone, I've replaced them with photos of Nicholas Cage, I'm
tired and in need of a hug.

#+begin_quote
I wish I could go back in time ⏲
#+end_quote

#+attr_latex: :width 0.2\linewidth
#+attr_org: :width 50
[[https://cdn3.iconfinder.com/data/icons/back-to-the-future/512/delorean-04-512.png]]

** No problem!
#+begin_quote
I wish I could go back in time ⏲
#+end_quote

You can! You can replace local changes with
#+begin_center
src_sh{git checkout -- $filename}
#+end_center
Or if you've committed a bunch of stuff that's wrong and just want to copy from
the main repository --- you could src_sh{git clone} a new copy, or you can
#+begin_center
src_sh{git fetch origin}\\
src_sh{git reset --hard origin/master}
#+end_center

* Summary
** Summary
+ Git tracks changes to files
 - Changes are stored as commits (cheap and plentiful)
 - A group of commits can be pushed (setting them in stone --- kinda)
+ Branches allow you to develop new things in isolation
 - Can be merged back together again when finished
 - You can move through time and code together

There's a lot more you can recover from
** Hosted Git

GitHub is a popular online host --- software forge --- for Git. Plus some (a lot) of stuff

Alternatives include:
+ [[https://gitlab.com/][GitLab]]
+ [[https://bitbucket.org/][BitBucket]]
+ [[https://sourcehut.org/][SourceHut]]
These take care of backups and many, many fancy things you will likely learn in good time

% Created 2021-03-30 Tue 21:12
% Intended LaTeX compiler: pdflatex
\documentclass[presentation]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{xcolor}
\usepackage{hyperref}
% features: (embed-files custom-font microtype maths .custom-maths-font acronym underline par-sep alegreya-typeface beamer image emoji engraved-code-setup engraved-code)

 \usepackage[main,include]{embedall}
 \IfFileExists{./\jobname.org}{\embedfile[desc=The original file]{\jobname.org}}{}

\usepackage[osf]{Alegreya}
\usepackage{AlegreyaSans}
\usepackage[scale=0.88]{sourcecodepro}

\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,factor=2000]{microtype}

\usepackage[nofont]{bmc-maths}
\usepackage[varbb]{newpxmath}

\newcommand{\acr}[1]{\protect\textls*[110]{\scshape #1}}
\newcommand{\acrs}{\protect\scalebox{.91}[.84]{\hspace{0.15ex}s}}
\usepackage[normalem]{ulem}
\setlength{\parskip}{\baselineskip}
\setlength{\parindent}{0pt}

\usepackage{graphicx}
\newcommand\emoji[1]{\raisebox{-0.3ex}{\includegraphics[height=1.8ex]{/home/tec/.emacs.d/.local/etc/emojis/twemoji-v2/#1}}}

 \usepackage{fvextra}
 \fvset{
 commandchars=\\\{\},
 highlightcolor=white!95!black!80!blue,
 breaklines=true,
 breaksymbol=\color{white!60!black}\tiny\ensuremath{\hookrightarrow}}
 \renewcommand\theFancyVerbLine{\footnotesize\color{black!40!white}\arabic{FancyVerbLine}}

 % TODO have code boxes keep line vertical alignment
 \usepackage[breakable,xparse]{tcolorbox}
 \DeclareTColorBox[]{Code}{o}%
 {colback=white!97!black, colframe=white!94!black,
 fontupper=\color{EFD}\footnotesize,
 IfNoValueTF={#1}%
 {boxsep=2pt, arc=2.5pt, outer arc=2.5pt,
 boxrule=0.5pt, left=2pt}%
 {boxsep=2.5pt, arc=0pt, outer arc=0pt,
 boxrule=0pt, leftrule=1.5pt, left=0.5pt},
 right=2pt, top=1pt, bottom=0.5pt,
 breakable}

\definecolor{EFD}{HTML}{383a42}
\definecolor{EFk}{HTML}{e45649}
\newcommand{\EFk}[1]{\textcolor{EFk}{#1}} % font-lock-keyword-face
\definecolor{EFd}{HTML}{84888b}
\newcommand{\EFd}[1]{\textcolor{EFd}{\textit{#1}}} % font-lock-doc-face
\definecolor{EFt}{HTML}{986801}
\newcommand{\EFt}[1]{\textcolor{EFt}{#1}} % font-lock-type-face
\definecolor{EFs}{HTML}{50a14f}
\newcommand{\EFs}[1]{\textcolor{EFs}{#1}} % font-lock-string-face
\definecolor{EFw}{HTML}{986801}
\newcommand{\EFw}[1]{\textcolor{EFw}{#1}} % font-lock-warning-face
\definecolor{EFb}{HTML}{a626a4}
\newcommand{\EFb}[1]{\textcolor{EFb}{#1}} % font-lock-builtin-face
\definecolor{EFct}{HTML}{9ca0a4}
\newcommand{\EFct}[1]{\textcolor{EFct}{#1}} % font-lock-comment-face
\definecolor{EFc}{HTML}{b751b6}
\newcommand{\EFc}[1]{\textcolor{EFc}{#1}} % font-lock-constant-face
\definecolor{EFpp}{HTML}{4078f2}
\newcommand{\EFpp}[1]{\textcolor{EFpp}{\textbf{#1}}} % font-lock-preprocessor-face
\definecolor{EFnc}{HTML}{4078f2}
\newcommand{\EFnc}[1]{\textcolor{EFnc}{\textbf{#1}}} % font-lock-negation-char-face
\definecolor{EFv}{HTML}{6a1868}
\newcommand{\EFv}[1]{\textcolor{EFv}{#1}} % font-lock-variable-name-face
\definecolor{EFf}{HTML}{a626a4}
\newcommand{\EFf}[1]{\textcolor{EFf}{#1}} % font-lock-function-name-face
\definecolor{EFcd}{HTML}{9ca0a4}
\newcommand{\EFcd}[1]{\textcolor{EFcd}{#1}} % font-lock-comment-delimiter-face
\definecolor{EFrc}{HTML}{4078f2}
\newcommand{\EFrc}[1]{\textcolor{EFrc}{\textbf{#1}}} % font-lock-regexp-grouping-construct
\definecolor{EFrb}{HTML}{4078f2}
\newcommand{\EFrb}[1]{\textcolor{EFrb}{\textbf{#1}}} % font-lock-regexp-grouping-backslash
\definecolor{EFhn}{HTML}{da8548}
\newcommand{\EFhn}[1]{\textcolor{EFhn}{\textbf{#1}}} % highlight-numbers-number
\definecolor{EFhq}{HTML}{4078f2}
\newcommand{\EFhq}[1]{\textcolor{EFhq}{#1}} % highlight-quoted-quote
\definecolor{EFhs}{HTML}{986801}
\newcommand{\EFhs}[1]{\textcolor{EFhs}{#1}} % highlight-quoted-symbol
\definecolor{EFrdi}{HTML}{4078f2}
\newcommand{\EFrdi}[1]{\textcolor{EFrdi}{#1}} % rainbow-delimiters-depth-1-face
\definecolor{EFrdii}{HTML}{a626a4}
\newcommand{\EFrdii}[1]{\textcolor{EFrdii}{#1}} % rainbow-delimiters-depth-2-face
\definecolor{EFrdiii}{HTML}{50a14f}
\newcommand{\EFrdiii}[1]{\textcolor{EFrdiii}{#1}} % rainbow-delimiters-depth-3-face
\definecolor{EFrdiv}{HTML}{da8548}
\newcommand{\EFrdiv}[1]{\textcolor{EFrdiv}{#1}} % rainbow-delimiters-depth-4-face
\definecolor{EFrdv}{HTML}{b751b6}
\newcommand{\EFrdv}[1]{\textcolor{EFrdv}{#1}} % rainbow-delimiters-depth-5-face
\definecolor{EFrdvi}{HTML}{986801}
\newcommand{\EFrdvi}[1]{\textcolor{EFrdvi}{#1}} % rainbow-delimiters-depth-6-face
\definecolor{EFrdvii}{HTML}{4db5bd}
\newcommand{\EFrdvii}[1]{\textcolor{EFrdvii}{#1}} % rainbow-delimiters-depth-7-face
\definecolor{EFrdiix}{HTML}{80a880}
\newcommand{\EFrdiix}[1]{\textcolor{EFrdiix}{#1}} % rainbow-delimiters-depth-8-face
\definecolor{EFrdix}{HTML}{887070}
\newcommand{\EFrdix}[1]{\textcolor{EFrdix}{#1}} % rainbow-delimiters-depth-9-face
% end features
\usetheme[progressbar=foot]{metropolis}
\author{Timothy}
\date{2021-03-30}
\title{Git Good}
\subtitle{Linus Torvalds' Magical Time Machine \emoji{23f0}}

 \colorlet{greenyblue}{blue!70!green}
 \colorlet{blueygreen}{blue!40!green}
 \providecolor{link}{named}{greenyblue}
 \providecolor{cite}{named}{blueygreen}
 \hypersetup{
 pdfauthor={Timothy},
 pdftitle={Git Good},
 pdfkeywords={},
 pdfsubject={},
 pdfcreator={Emacs 28.0.50 (Org mode 9.5)},
 pdflang={English},
 breaklinks=true,
 colorlinks=true,
 linkcolor=,
 urlcolor=link,
 citecolor=cite
}
 \urlstyle{same}
 \begin{document}

\maketitle

\section{Keeping track of files is hard}
\label{sec:-keeping-track}
\begin{frame}[label={sec:weve-all-seen}]{We've all seen it before \emoji{1f62b}}
\begin{center}
\includegraphics[width=.9\linewidth]{file-mess-1.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:keeping-track-files}]{We've all seen it before (2) \emoji{1f62b} \emoji{1f62b}}
\begin{center}
\includegraphics[width=.9\linewidth]{file-mess-2.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:compsci-group-project}]{The CompSci Group Project issue}
\begin{itemize}
\item Your group project is due tonight and your code is ready for submission
\item While running a final test (for good luck \emoji{1f91e}) you discover a minor \alert{bug} your
group member forgot about
\item You accidentally changed working code and ended up breaking a chunk of code
you don't understand \emoji{1f631}
\item You no longer remember what was and wasn't there
\item It is 23:58 \emoji{1f630}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:an-actual-physics},fragile]{An actual physics report I was working on}
 \begin{itemize}
\item I'm a last minute person, report is due tomorrow
\item It's manageable, I typed up \(\frac{2}{3}\) of it yesterday
\item I'm moving an image in the \emph{Discussion} section around, Microsoft Word freezes \emoji{2744}
\item I wait a few minutes, oh well, looks like I need to Force Quit
\item Re-open the document: Word complains that it's corrupted, and that it can't
restore the file \emoji{1f611}
\item I look at my \texttt{Report v3.docx}, it's from several hours ago
\item I need to re-do at least half of the work I've done \emoji{1f629}
\item I settle in for a later night than I was planning on\ldots{} \emoji{23f3}
\end{itemize}
\end{frame}
\section{Introduction}
\label{sec:introduction}
\begin{frame}[label={sec:version-control-systems}]{Version control systems --- recording changes to files over time}
It keeps track of changes. \\
It keeps track of changes \emph{really} well.
\begin{itemize}
\item My changes \emoji{1f642}
\item Your group member's changes \emoji{1f600}
\item The version that's been sent to the customer \emoji{1f911}
\item The version that's being tested with an urgent bugfix \emoji{1f601}
\item The new experimental version that might break everything else \emoji{1f607}
\item Whatever other changes have happened\ldots{} \emoji{1f60d}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:what-git},fragile]{What is Git?}
 \begin{itemize}
\item Open source project \emph{circa.} 2005 (developed for the Linux kernel \emoji{1f427})
\item A command line utility (but there are graphical interfaces)
\item Imagine \Verb{\color{EFD}\textcolor[HTML]{986801}{git}} as something sitting on top of your file system
\item A distributed \emoji{1f4e1} version control system --- \acr{dvcs}
\item Keeps all change info in a \texttt{.git} folder
\end{itemize}
\end{frame}
\begin{frame}[label={sec:aside-distributed-version}]{Aside: Distributed Version Control Systems (\acr{dvcs})}
A thing that solves our earlier problems
\begin{description}
\item[{\alert{Version control system}}] A system recording changes to files over time
\item[{\alert{Distributed}}] No main server, full history available to anyone
\end{description}
\end{frame}
\begin{frame}[label={sec:git-structured-way},fragile]{Git: A structured way of storing versions and changes}
 \begin{itemize}
\item Every change is stored as a new compressed file, and can easily generate the
difference with a previous version
\item This creates a structure known as a \acr{dag}\footnote{Directed Acyclic Graph}
\item \Verb{\color{EFD}\textcolor[HTML]{986801}{git}} operates on ---and provides an interface to--- this structure

\begin{center}
\includegraphics[width=.9\linewidth]{git-rebaseing.png}
\end{center}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:what-does-this}]{What does this mean?}
You'll have no reason to \alert{ever} lose your work again, and \emph{unparalleled} ability to
traverse and review changes made.
\end{frame}

\section{Getting started}
\label{sec:getting-started}
\begin{frame}[label={sec:setup},fragile]{Setup}
 \begin{itemize}
\item Download \Verb{\color{EFD}\textcolor[HTML]{986801}{git}}
\item There are nice graphical interfaced, but we'll introduce those later
\item The git commands are universal, and the simplest way to get started
\end{itemize}
\end{frame}

\begin{frame}[label={sec:creating-repository-ie},fragile]{Creating a repository (i.e. project)}
 Create a new directory \emoji{1f4c1} (e.g. \texttt{my big project}), open a terminal within it and
execute
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} init}
\end{center}
Congratulations, you've created a repository \emoji{1f4d4}
\end{frame}

\begin{frame}[label={sec:clone-repository},fragile]{Clone a repository}
 Want to build on somebody else's work? That's easy!

\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} clone /path/to/repository}
\end{center}

This also works with remote servers, e.g. \Verb{\color{EFD}\textcolor[HTML]{986801}{git} clone https://github.com/tecosaur/vscode-settings.git}.
\end{frame}

\begin{frame}[label={sec:workflow},fragile]{Workflow}
 Local repo contains three trees in the .git file
\begin{itemize}
\item Working directory --- Where all the files are
\item Index --- The staging area
\item \verb~HEAD~ --- The latest commit
\end{itemize}
\end{frame}
\begin{frame}[label={sec:add-commit},fragile]{Add and commit}
 After changing some files you add it to the index tree

\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} add \$\EFv{filename}} \\
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} add *}
\end{center}

Then to actually commit them to the \verb~HEAD~
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} commit -m \EFs{"Message"}}
\end{center}
All commits need a message and are given an identifying serial number, which is
a hash of its structure and contents.

Your changes are still local however
\end{frame}
\begin{frame}[label={sec:whats-with-these}]{What's with these messages?}
There is no hard and fast rule but the idea is to \alert{describe} what this commit does
\begin{itemize}
\item Adds support for \emph{x}. Fixes bug that caused \emph{y}.
\item Removes changes made in commit \emph{z}.
\item Add discussion of errors to report
\end{itemize}

Looking at a list of commit messages should give a decent idea of what happened
to the code. Try to improve on the following commit messages:
\begin{itemize}
\item General commit
\item Made some changes
\item Bug-fixes
\item Debugging 4: Reloaded (continued)
\begin{itemize}
\item \emph{I've actually done this before}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:so-what-are},fragile]{So, what are we doing?}
 Git tracks the changes between files
\begin{itemize}
\item Additions
\item Deletions
\end{itemize}
Starting from a \verb~HEAD~ and given a sequence of commits, you could follow what each
says and end up at the same final point
\end{frame}
\section{The next few steps}
\label{sec:-next-few}
\begin{frame}[label={sec:pushing-pulling},fragile]{Pushing and Pulling}
 To send your committed changes back to someone else's copy \emoji{1f4e1}
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} push origin \$\EFv{branch}}
\end{center}

And to fetch some new changes \emoji{1f6f0}
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} pull}
\end{center}
\end{frame}

\begin{frame}[label={sec:branching},fragile]{Branching}
 Used to develop features isolated from the main code (remember your tragic
mistake just before submitting?) either master or main is the default branch.
To create a new branch named ``feature''
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} checkout -b feature}
\end{center}
Switch back to master/main
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} checkout master/main}
\end{center}

\begin{center}
\includegraphics[width=0.7\linewidth]{git-branching.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:next-few-steps},fragile]{Branching}
 A branch --- or any other change --- is \alert{not available to others unless} you \alert{push} it to your remote repository
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} push origin \$\EFv{branch}}
\end{center}
\end{frame}

\begin{frame}[label={sec:merging},fragile]{Merging}
 To bring down any changes made by someone or somewhere else
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} pull}
\end{center}
To merge another branch into your current branch (e.g. \texttt{master})
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} merge \$\EFv{branch}}
\end{center}
This will attempt to merge any changes from \Verb{\color{EFD}\$\EFv{branch}} into the branch your
current \verb~HEAD~ is on

\begin{center}
\includegraphics[width=.9\linewidth]{git-merging.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:merge-conflicts},fragile]{Merge Conflicts}
 In both cases \texttt{git} tries to auto-merge changes. \alert{Conflicts} --- two different
changes to the same part of the same file --- need to be resolved
manually and added before trying again.
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} add \$\EFv{filename}}
\end{center}
One can also \alert{preview} changes (to see if conflicts will occur \emoji{1f440})
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} diff \$\EFv{source_branch} \$\EFv{target_branch}}
\end{center}

\hfill

\begin{center}
\includegraphics[width=.9\linewidth]{git-merging.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:tagging},fragile]{Tagging}
 When you hit a major milestone \emoji{1f64c} (it works, we've submitted etc.) you can tag a
particular commit
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} tag 1.0.0 2b331ie545}
\end{center}
The \texttt{2b...} is the first 10 characters of the commit \acr{id} you want to reference.
You can find a commit \acr{id} by looking at the \alert{log}.
\end{frame}
\begin{frame}[label={sec:log},fragile]{Log}
 You can study a repository history using \Verb{\color{EFD}\textcolor[HTML]{986801}{git} log}.
There are many nice options
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} log --pretty=oneline}
\end{center}
Or maybe you'd like to see some \acr{ascii} art
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} log --graph --oneline --decorate --all}
\end{center}
See only which files have changed
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} log --name-status}\\
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} log --help}
\end{center}
\end{frame}
\begin{frame}[label={sec:oooops}]{Oooops}
Halp, I destroyed \alert{everything}.\\
All the files are gone, I've replaced them with photos of Nicholas Cage, I'm
tired and in need of a hug.

\begin{quote}
I wish I could go back in time \emoji{23f2}
\end{quote}

% fetched from https://cdn3.iconfinder.com/data/icons/back-to-the-future/512/delorean-04-512.png
\begin{center}
\includegraphics[width=0.2\linewidth]{/tmp/cdn3-iconfinder-com-data-icons-back-to-the-future-512-delorean-04-512.png}
\end{center}
\end{frame}

\begin{frame}[label={sec:no-problem},fragile]{No problem!}
 \begin{quote}
I wish I could go back in time \emoji{23f2}
\end{quote}

You can! You can replace local changes with
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} checkout -- \$\EFv{filename}}
\end{center}
Or if you've committed a bunch of stuff that's wrong and just want to copy from
the main repository --- you could \Verb{\color{EFD}\textcolor[HTML]{986801}{git} clone} a new copy, or you can
\begin{center}
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} fetch origin}\\
\Verb{\color{EFD}\textcolor[HTML]{986801}{git} reset --hard origin/master}
\end{center}
\end{frame}

\section{Summary}
\label{sec:-summary}
\begin{frame}[label={sec:summary}]{Summary}
\begin{itemize}
\item Git tracks changes to files
\begin{itemize}
\item Changes are stored as commits (cheap and plentiful)
\item A group of commits can be pushed (setting them in stone --- kinda)
\end{itemize}
\item Branches allow you to develop new things in isolation
\begin{itemize}
\item Can be merged back together again when finished
\item You can move through time and code together
\end{itemize}
\end{itemize}

There's a lot more you can recover from
\end{frame}
\begin{frame}[label={sec:hosted-git}]{Hosted Git}
GitHub is a popular online host --- software forge --- for Git. Plus some (a lot) of stuff

Alternatives include:
\begin{itemize}
\item \href{https://gitlab.com/}{GitLab}
\item \href{https://bitbucket.org/}{BitBucket}
\item \href{https://sourcehut.org/}{SourceHut}
\end{itemize}
These take care of backups and many, many fancy things you will likely learn in good time
\end{frame}
\end{document}

